Теорема о двойном пузыре (Russian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Теорема о двойном пузыре" in Russian language version.

refsWebsite
Global rank Russian rank
2nd place
3rd place
451st place
2,245th place
26th place
145th place
69th place
148th place
1st place
1st place
18th place
63rd place
102nd place
1,802nd place
12th place
39th place
3,410th place
4,513th place
580th place
1,069th place

ams.org

mathscinet.ams.org

  • Lawlor, Gary R. (2014), "Double bubbles for immiscible fluids in ", Journal of Geometric Analysis, 24 (1): 190–204, doi:10.1007/s12220-012-9333-1, MR 3145921
  • Foisy, Joel; Alfaro Garcia, Manuel; Brock, Jeffrey Farlowe; Hodges, Nickelous; Zimba, Jason (1993), "The standard double soap bubble in uniquely minimizes perimeter", Pacific Journal of Mathematics, 159 (1): 47–59, doi:10.2140/pjm.1993.159.47, MR 1211384
  • Morgan, Frank (2004), "Proof of the double bubble conjecture", in Hardt, Robert (ed.), Six Themes on Variation, Student Mathematical Library, vol. 26, American Mathematical Society, pp. 59–77, doi:10.1090/stml/026/04, hdl:10481/32449, MR 2108996; revised version of an article initially appearing in the American Mathematical Monthly (2001), doi:10.1080/00029890.2001.11919741, JSTOR 2695380, MR: 1834699
  • Hass, Joel; Schlafly, Roger (2000), "Double bubbles minimize", Annals of Mathematics, 2nd Ser., 151 (2): 459–515, arXiv:math/0003157, Bibcode:2000math......3157H, doi:10.2307/121042, JSTOR 121042, MR 1765704; previously announced in Electronic Research Announcements of the American Mathematical Society, 1995, doi:10.1090/S1079-6762-95-03001-0
  • Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002), "Proof of the double bubble conjecture", Annals of Mathematics, 2nd Ser., 155 (2): 459–489, arXiv:math/0406017, doi:10.2307/3062123, JSTOR 3062123, MR 1906593
  • Reichardt, Ben W.; Heilmann, Cory; Lai, Yuan Y.; Spielman, Anita (2003), "Proof of the double bubble conjecture in and certain higher dimensional cases", Pacific Journal of Mathematics, 208 (2): 347–366, doi:10.2140/pjm.2003.208.347, MR 1971669
  • Reichardt, Ben W. (2008), "Proof of the double bubble conjecture in ", Journal of Geometric Analysis, 18 (1): 172–191, arXiv:0705.1601, doi:10.1007/s12220-007-9002-y, MR 2365672
  • Sullivan, John M. (1999), "The geometry of bubbles and foams", in Sadoc, Jean-François; Rivier, Nicolas (eds.), Foams and Emulsions: Proc. NATO Advanced Study Inst. on Foams and Emulsions, Emulsions and Cellular Materials, Cargèse, Corsica, 12–24 May, 1997, NATO Adv. Sci. Inst. Ser. E Appl. Sci., vol. 354, Dordrecht: Kluwer Acad. Publ., pp. 379–402, doi:10.1007/978-94-015-9157-7_23, MR 1688327
  • Hales, Thomas C. (2001), "The honeycomb conjecture", Discrete and Computational Geometry, 25 (1): 1–22, arXiv:math.MG/9906042, doi:10.1007/s004540010071, MR 1797293

ams.org

arxiv.org

berkeley.edu

math.berkeley.edu

doi.org

doi.org

  • Lawlor, Gary R. (2014), "Double bubbles for immiscible fluids in ", Journal of Geometric Analysis, 24 (1): 190–204, doi:10.1007/s12220-012-9333-1, MR 3145921
  • Foisy, Joel; Alfaro Garcia, Manuel; Brock, Jeffrey Farlowe; Hodges, Nickelous; Zimba, Jason (1993), "The standard double soap bubble in uniquely minimizes perimeter", Pacific Journal of Mathematics, 159 (1): 47–59, doi:10.2140/pjm.1993.159.47, MR 1211384
  • Morgan, Frank (2004), "Proof of the double bubble conjecture", in Hardt, Robert (ed.), Six Themes on Variation, Student Mathematical Library, vol. 26, American Mathematical Society, pp. 59–77, doi:10.1090/stml/026/04, hdl:10481/32449, MR 2108996; revised version of an article initially appearing in the American Mathematical Monthly (2001), doi:10.1080/00029890.2001.11919741, JSTOR 2695380, MR: 1834699
  • Peterson, Ivars (12 августа 1995), "Toil and trouble over double bubbles" (PDF), Science News, 148 (7): 101–102, doi:10.2307/3979333, JSTOR 3979333
  • Hass, Joel; Schlafly, Roger (2000), "Double bubbles minimize", Annals of Mathematics, 2nd Ser., 151 (2): 459–515, arXiv:math/0003157, Bibcode:2000math......3157H, doi:10.2307/121042, JSTOR 121042, MR 1765704; previously announced in Electronic Research Announcements of the American Mathematical Society, 1995, doi:10.1090/S1079-6762-95-03001-0
  • Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002), "Proof of the double bubble conjecture", Annals of Mathematics, 2nd Ser., 155 (2): 459–489, arXiv:math/0406017, doi:10.2307/3062123, JSTOR 3062123, MR 1906593
  • Cipra, Barry A. (17 марта 2000), "Mathematics: Why Double Bubbles Form the Way They Do", Science, 287 (5460): 1910–1912, doi:10.1126/science.287.5460.1910a, Архивировано из оригинала 14 октября 2022, Дата обращения: 9 октября 2022
  • Reichardt, Ben W.; Heilmann, Cory; Lai, Yuan Y.; Spielman, Anita (2003), "Proof of the double bubble conjecture in and certain higher dimensional cases", Pacific Journal of Mathematics, 208 (2): 347–366, doi:10.2140/pjm.2003.208.347, MR 1971669
  • Reichardt, Ben W. (2008), "Proof of the double bubble conjecture in ", Journal of Geometric Analysis, 18 (1): 172–191, arXiv:0705.1601, doi:10.1007/s12220-007-9002-y, MR 2365672
  • Sullivan, John M. (1999), "The geometry of bubbles and foams", in Sadoc, Jean-François; Rivier, Nicolas (eds.), Foams and Emulsions: Proc. NATO Advanced Study Inst. on Foams and Emulsions, Emulsions and Cellular Materials, Cargèse, Corsica, 12–24 May, 1997, NATO Adv. Sci. Inst. Ser. E Appl. Sci., vol. 354, Dordrecht: Kluwer Acad. Publ., pp. 379–402, doi:10.1007/978-94-015-9157-7_23, MR 1688327
  • Hales, Thomas C. (2001), "The honeycomb conjecture", Discrete and Computational Geometry, 25 (1): 1–22, arXiv:math.MG/9906042, doi:10.1007/s004540010071, MR 1797293
  • Weaire, Denis; Phelan, Robert (1994), "A counter-example to Kelvin's conjecture on minimal surfaces", Philosophical Magazine Letters, 69 (2): 107–110, Bibcode:1994PMagL..69..107W, doi:10.1080/09500839408241577

dx.doi.org

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

jstor.org

sciencenews.org

theguardian.com

web.archive.org