NELSON, David; Michael Cox. Lehninger Principles of Biochemistry. Fifth. vyd. New York, NY : W.H. Freeman and Company, 2008. Dostupné online.ISBN 978-0-7167-7108-1.
BEAVO, Joseph; Sharron Francis; Miles Houslay. Cyclic Nucleotide Phosphodiesterases in Health and Disease. Boca Raton, FL : CRC Press, 2010. Dostupné online.ISBN 9780849396687. S. 546.
doi.org
dx.doi.org
Cyclic nucleotide research -- still expanding after half a century. Nat. Rev. Mol. Cell Biol., September 2002, s. 710–8. DOI: 10.1038/nrm911. PMID 12209131.
TAL, Nitzan; MOREHOUSE, Benjamin R.; MILLMAN, Adi. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell, 2021-11, roč. 184, čís. 23, s. 5728–5739.e16. Dostupné online [cit. 2022-08-11]. DOI: 10.1016/j.cell.2021.09.031. (po anglicky)
SEIFERT, Roland. cCMP and cUMP: emerging second messengers. Trends in Biochemical Sciences, 2015-01, roč. 40, čís. 1, s. 8–15. Dostupné online [cit. 2022-08-11]. DOI: 10.1016/j.tibs.2014.10.008. (po anglicky)
JACKSON, Edwin K.. The 2′,3′-cAMP-adenosine pathway. American Journal of Physiology-Renal Physiology, 2011-12, roč. 301, čís. 6, s. F1160–F1167. Dostupné online [cit. 2022-08-11]. ISSN1931-857X. DOI: 10.1152/ajprenal.00450.2011. (po anglicky)
JACKSON, Edwin K.; MI, Zaichuan; JANESKO-FELDMAN, Keri. 2′,3′-cGMP exists in vivo and comprises a 2′,3′-cGMP-guanosine pathway. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2019-06-01, roč. 316, čís. 6, s. R783–R790. Dostupné online [cit. 2022-08-11]. ISSN0363-6119. DOI: 10.1152/ajpregu.00401.2018. (po anglicky)
BORDELEAU, Emily; OBERC, Christopher; AMEEN, Eve. Identification of cytidine 2′,3′-cyclic monophosphate and uridine 2′,3′-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorganic & Medicinal Chemistry Letters, 2014-09-15, roč. 24, čís. 18, s. 4520–4522. Dostupné online [cit. 2022-08-11]. ISSN0960-894X. DOI: 10.1016/j.bmcl.2014.07.080. (po anglicky)
Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J. Biol. Chem., February 2013, s. 3126–35. DOI: 10.1074/jbc.M112.403279. PMID 23255611.
Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., September 2006, s. 488–520. DOI: 10.1124/pr.58.3.5. PMID 16968949.
Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry. PLOS ONE, 2013, s. e54158. DOI: 10.1371/journal.pone.0054158. PMID 23342095.
Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol., January 2007, s. 63–73. DOI: 10.1038/nrm2082. PMID 17183361.
Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem. Biophys. Res. Commun., December 2011, s. 563–6. DOI: 10.1016/j.bbrc.2011.10.093. PMID 22074826.
BRIDGES, D; Fraser ME; Moorhead GB. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics, 2005, s. 6. DOI: 10.1186/1471-2105-6-6. PMID 15644130.
Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Br. J. Pharmacol., September 1997, s. 158–64. DOI: 10.1038/sj.bjp.0701339. PMID 9298542.
Holz GG. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes, January 2004, s. 5–13. DOI: 10.2337/diabetes.53.1.5. PMID 14693691.
Zhou Y, Zhang X, Ebright RH. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc. Natl. Acad. Sci. U.S.A., July 1993, s. 6081–5. DOI: 10.1073/pnas.90.13.6081. PMID 8392187.
SUTHERLAND, Earl; Robison GA; Butcher RW. Some aspects of the biological role of adenosine 3',5'-monophosphate (cyclic AMP). Circulation, 1968, s. 279–306. DOI: 10.1161/01.CIR.37.2.279.
LINCOLN, TM; Cornwell TL. Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels, 1991, s. 129–37. DOI: 10.1159/000158852. PMID 1848122.
elsevier.com
linkinghub.elsevier.com
TAL, Nitzan; MOREHOUSE, Benjamin R.; MILLMAN, Adi. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell, 2021-11, roč. 184, čís. 23, s. 5728–5739.e16. Dostupné online [cit. 2022-08-11]. DOI: 10.1016/j.cell.2021.09.031. (po anglicky)
SEIFERT, Roland. cCMP and cUMP: emerging second messengers. Trends in Biochemical Sciences, 2015-01, roč. 40, čís. 1, s. 8–15. Dostupné online [cit. 2022-08-11]. DOI: 10.1016/j.tibs.2014.10.008. (po anglicky)
nih.gov
ncbi.nlm.nih.gov
Cyclic nucleotide research -- still expanding after half a century. Nat. Rev. Mol. Cell Biol., September 2002, s. 710–8. DOI: 10.1038/nrm911. PMID 12209131.
Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J. Biol. Chem., February 2013, s. 3126–35. DOI: 10.1074/jbc.M112.403279. PMID 23255611.
Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., September 2006, s. 488–520. DOI: 10.1124/pr.58.3.5. PMID 16968949.
Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry. PLOS ONE, 2013, s. e54158. DOI: 10.1371/journal.pone.0054158. PMID 23342095.
Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol., January 2007, s. 63–73. DOI: 10.1038/nrm2082. PMID 17183361.
Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem. Biophys. Res. Commun., December 2011, s. 563–6. DOI: 10.1016/j.bbrc.2011.10.093. PMID 22074826.
BRIDGES, D; Fraser ME; Moorhead GB. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics, 2005, s. 6. DOI: 10.1186/1471-2105-6-6. PMID 15644130.
Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Br. J. Pharmacol., September 1997, s. 158–64. DOI: 10.1038/sj.bjp.0701339. PMID 9298542.
Holz GG. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes, January 2004, s. 5–13. DOI: 10.2337/diabetes.53.1.5. PMID 14693691.
Zhou Y, Zhang X, Ebright RH. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc. Natl. Acad. Sci. U.S.A., July 1993, s. 6081–5. DOI: 10.1073/pnas.90.13.6081. PMID 8392187.
LINCOLN, TM; Cornwell TL. Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels, 1991, s. 129–37. DOI: 10.1159/000158852. PMID 1848122.
nlm.nih.gov
National Library of Medicine - Medical Subject Headings, Adenylyl Cyclase [online]. . Dostupné online.
physiology.org
JACKSON, Edwin K.. The 2′,3′-cAMP-adenosine pathway. American Journal of Physiology-Renal Physiology, 2011-12, roč. 301, čís. 6, s. F1160–F1167. Dostupné online [cit. 2022-08-11]. ISSN1931-857X. DOI: 10.1152/ajprenal.00450.2011. (po anglicky)
JACKSON, Edwin K.; MI, Zaichuan; JANESKO-FELDMAN, Keri. 2′,3′-cGMP exists in vivo and comprises a 2′,3′-cGMP-guanosine pathway. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2019-06-01, roč. 316, čís. 6, s. R783–R790. Dostupné online [cit. 2022-08-11]. ISSN0363-6119. DOI: 10.1152/ajpregu.00401.2018. (po anglicky)
sciencedirect.com
BORDELEAU, Emily; OBERC, Christopher; AMEEN, Eve. Identification of cytidine 2′,3′-cyclic monophosphate and uridine 2′,3′-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorganic & Medicinal Chemistry Letters, 2014-09-15, roč. 24, čís. 18, s. 4520–4522. Dostupné online [cit. 2022-08-11]. ISSN0960-894X. DOI: 10.1016/j.bmcl.2014.07.080. (po anglicky)
JACKSON, Edwin K.. The 2′,3′-cAMP-adenosine pathway. American Journal of Physiology-Renal Physiology, 2011-12, roč. 301, čís. 6, s. F1160–F1167. Dostupné online [cit. 2022-08-11]. ISSN1931-857X. DOI: 10.1152/ajprenal.00450.2011. (po anglicky)
JACKSON, Edwin K.; MI, Zaichuan; JANESKO-FELDMAN, Keri. 2′,3′-cGMP exists in vivo and comprises a 2′,3′-cGMP-guanosine pathway. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2019-06-01, roč. 316, čís. 6, s. R783–R790. Dostupné online [cit. 2022-08-11]. ISSN0363-6119. DOI: 10.1152/ajpregu.00401.2018. (po anglicky)
BORDELEAU, Emily; OBERC, Christopher; AMEEN, Eve. Identification of cytidine 2′,3′-cyclic monophosphate and uridine 2′,3′-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorganic & Medicinal Chemistry Letters, 2014-09-15, roč. 24, čís. 18, s. 4520–4522. Dostupné online [cit. 2022-08-11]. ISSN0960-894X. DOI: 10.1016/j.bmcl.2014.07.080. (po anglicky)