E (константа) (Serbian Wikipedia)

Analysis of information sources in references of the Wikipedia article "E (константа)" in Serbian language version.

refsWebsite
Global rank Serbian rank
3rd place
2nd place
6th place
5th place
513th place
293rd place
3,503rd place
1,585th place
124th place
599th place
2,594th place
2,408th place
low place
low place

archive.org

bnf.fr

gallica.bnf.fr

  • Jacob Bernoulli considered the problem of continuous compounding of interest, which led to a series expression for e. See: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the Journal des Savants (Ephemerides Eruditorum Gallicanæ), in the year (anno) 1685.**), Acta eruditorum, pp. 219–23. On page 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series [a geometric series] is larger [than]. … if a=b, [the lender] will be owed more than 2½a and less than 3a.) If a=b, the geometric series reduces to the series for a × e, so 2.5 < e < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the Journal des Sçavans of 1685 at the bottom of page 314.)

books.google.com

  • Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (illustrated изд.). Sterling Publishing Company. стр. 166. ISBN 978-1-4027-5796-9.  Extract of page 166
  • Wilson, Robinn (2018). Euler's Pioneering Equation: The most beautiful theorem in mathematics (illustrated изд.). Oxford University Press. стр. (preface). ISBN 978-0-19-251405-9. 
  • Posamentier, Alfred S.; Lehmann, Ingmar (2004). Pi: A Biography of the World's Most Mysterious Number (illustrated изд.). Prometheus Books. стр. 68. ISBN 978-1-59102-200-8. 
  • Jacob Bernoulli considered the problem of continuous compounding of interest, which led to a series expression for e. See: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the Journal des Savants (Ephemerides Eruditorum Gallicanæ), in the year (anno) 1685.**), Acta eruditorum, pp. 219–23. On page 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series [a geometric series] is larger [than]. … if a=b, [the lender] will be owed more than 2½a and less than 3a.) If a=b, the geometric series reduces to the series for a × e, so 2.5 < e < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the Journal des Sçavans of 1685 at the bottom of page 314.)
  • Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle … (Mathematical and physical correspondence of some famous geometers of the 18th century), vol. 1, (St. Petersburg, Russia: 1843), pp. 56–60, see especially. Fuss, Paul Heinrich (1843). Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle: Précédé d'une notice sur les travaux de Léonard Euler, tant imprimés qu'inédits et publiée sous les auspices de l'Académie impériale des sciences de Saint-Pétersbourg. стр. 58.  From p. 58: " … ( e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … " ( … (e denotes that number whose hyperbolic [i.e., natural] logarithm is equal to 1) … )
  • Leonhard Euler, Mechanica, sive Motus scientia analytice exposita (St. Petersburg (Petropoli), Russia: Academy of Sciences, 1736), vol. 1, Chapter 2, Corollary 11, paragraph 171, p. 68. From page 68: Erit enim seu ubi e denotat numerum, cuius logarithmus hyperbolicus est 1. (So it [i.e., c, the speed] will be or , where e denotes the number whose hyperbolic [i.e., natural] logarithm is 1.)

pacific.edu

scholarlycommons.pacific.edu

st-and.ac.uk

www-history.mcs.st-and.ac.uk

uni-goettingen.de

leibniz.uni-goettingen.de

wolfram.com

mathworld.wolfram.com

  • Weisstein, Eric W. „e”. mathworld.wolfram.com (на језику: енглески). Приступљено 2020-08-10.