Lippard, S. J. (1994). Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S., ur. Bioinorganic Chemistry(PDF). Mill Valle, CA,: University Science Books.
Fitzgerald, D. J.; Maggio, J. E.; Esler, W. P.; Stinson, E. R.; Jennings, J. M.; Ghilardi, J. R.; Mantyh, P. W.; Bush, A. I.; Moir, R. D.; Rosenkranz, K. M.; Tanzi, R. E. (1995). „Zinc and Alzheimer's disease”. Science. 268: 1920—1923. PMID7604268.
Leatherbarrow, RJ (1990). „Using linear and non-linear regression to fit biochemical data”. Trends in Biochemical Sciences. 15 (12): 455—8. PMID2077683. doi:10.1016/0968-0004(90)90295-M.
Tseng, SJ; Hsu, JP (1990). „A comparison of the parameter estimating procedures for the Michaelis-Menten model”. Journal of Theoretical Biology. 145 (4): 457—64. PMID2246896. doi:10.1016/S0022-5193(05)80481-3.
Walsh, R.; Martin, E.; Darvesh, S. (2011). „Limitations of conventional inhibitor classifications”. Integrative Biology. Royal Society of Chemistry. 3 (12): 1197—1201. PMID22038120. doi:10.1039/c1ib00053e.
Walsh, R.; Martin, E.; Darvesh, S. (2007). „A versatile equation to describe reversible enzyme inhibition and activation kinetics: Modeling β-galactosidase and butyrylcholinesterase”. Biochimica et Biophysica Acta (BBA) – General Subjects. 1770 (5): 733—746. PMID17307293. doi:10.1016/j.bbagen.2007.01.001.
Adam, GC; Cravatt, BF; Sorensen, EJ (2001). „Profiling the specific reactivity of the proteome with non-directed activity-based probes”. Chemistry & Biology. 8 (1): 81—95. PMID11182321. doi:10.1016/S1074-5521(00)90060-7.
Szedlacsek, SE; Duggleby, RG (1995). „Kinetics of slow and tight-binding inhibitors”. Enzyme Kinetics and Mechanism Part D: Developments in Enzyme Dynamics. Methods in Enzymology. 249. str. 144—80. ISBN978-0-12-182150-0. PMID7791610. doi:10.1016/0076-6879(95)49034-5.
Stone, SR; Morrison, JF (1986). „Mechanism of inhibition of dihydrofolate reductases from bacterial and vertebrate sources by various classes of folate analogues”. Biochimica et Biophysica Acta. 869 (3): 275—85. PMID3511964. doi:10.1016/0167-4838(86)90067-1.
Pick, FM; McGartoll, MA; Bray, RC (1971). „Reaction of formaldehyde and of methanol with xanthine oxidase”. European Journal of Biochemistry / FEBS. 18 (1): 65—72. PMID4322209. doi:10.1111/j.1432-1033.1971.tb01215.x.
Glen RC, Allen SC; Allen (2003). „Ligand-protein docking: cancer research at the interface between biology and chemistry”. Curr. Med. Chem. 10 (9): 763—7. PMID12678780. doi:10.2174/0929867033457809.
VG, Box (1997). „The Molecular Mechanics of Quantized Valence Bonds”. J Mol Model. 3 (3): 124—41. doi:10.1007/s008940050026.
Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP (2000). „Basis for effective combination cancer chemotherapy with antimetabolites”. Pharmacol. Ther. 87 (2—3): 227—53. PMID11008002. doi:10.1016/S0163-7258(00)00086-3.
Maggi, M; Filippi, S; Ledda, F; Magini, A; Forti, G (2000). „Erectile dysfunction: from biochemical pharmacology to advances in medical therapy”. European Journal of Endocrinology. Bioscientifica. 143 (2): 143—54. PMID10913932. doi:10.1530/eje.0.1430143.
McGuire, JJ (2003). „Anticancer antifolates: current status and future directions”. Current pharmaceutical design. 9 (31): 2593—613. PMID14529544. doi:10.2174/1381612033453712.
Katz, AH; Caufield, CE (2003). „Structure-based design approaches to cell wall biosynthesis inhibitors”. Current pharmaceutical design. 9 (11): 857—66. PMID12678870. doi:10.2174/1381612033455305.
Wegener G, Krause U (2002). „Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle”. Biochem. Soc. Trans. 30 (2): 264—270. PMID12023862. doi:10.1042/bst0300264.
Okar, DA; Lange, AJ (1999). „Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes”. BioFactors (Oxford, England). 10 (1): 1—14. PMID10475585. doi:10.1002/biof.5520100101.
Levilliers, J.; Péron; Arrio; Pudles (1970). „On the mechanism of action of proteolyticinhibitors: IV. Effect of 8murea on the stability of trypsin in trypsin-lnhibitor complexes”. Archives of Biochemistry and Biophysics. 140 (2): 474—483. PMID5528741. doi:10.1016/0003-9861(70)90091-3.
Smyth, TP (2004). „Substrate variants versus transition state analogues as noncovalent reversible enzyme inhibitors”. Bioorganic & Medicinal Chemistry. 12 (15): 4081—8. PMID15246086. doi:10.1016/j.bmc.2004.05.041.
Hartley, RW (1989). „Barnase and barstar: two small proteins to fold and fit together”. Trends in Biochemical Sciences. 14 (11): 450—4. PMID2696173. doi:10.1016/0968-0004(89)90104-7.
Serrano L, Kellis JT, Cann P, Matouschek A, Fersht AR (1992). „The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability”. J. Mol. Biol. 224 (3): 783—804. PMID1569557. doi:10.1016/0022-2836(92)90562-X.
Serrano L, Matouschek A, Fersht AR (1992). „The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure”. J. Mol. Biol. 224 (3): 805—18. PMID1569558. doi:10.1016/0022-2836(92)90563-Y.
Matouschek A, Serrano L, Fersht AR (1992). „The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure”. J. Mol. Biol. 224 (3): 819—35. PMID1569559. doi:10.1016/0022-2836(92)90564-Z.
Quinn DM (1987). „Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states”. Chemical Reviews. 87 (5): 955—79. doi:10.1021/cr00081a005.
Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991). „Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein”. Science. 253 (5022): 872—9. Bibcode:1991Sci...253..872S. PMID1678899. doi:10.1126/science.1678899.
Sussman JL, Harel M, Silman I (1993). „Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs”. Chem. Biol. Interact. 87 (1—3): 187—97. PMID8343975. doi:10.1016/0009-2797(93)90042-W.
S, Tan; Evans R; Singh B (2006). „Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops”. Amino Acids. 30 (2): 195—204. PMID16547651. doi:10.1007/s00726-005-0254-1.
Steinrücken HC, Amrhein N (1980). „The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase”. Biochemical and Biophysical Research Communications. 94 (4): 1207—12. PMID7396959. doi:10.1016/0006-291X(80)90547-1.
Lamberth C, Jeanmart S, Luksch T, Plant A (2013). „Current Challenges and Trends in the Discovery of Agrochemicals”. Science. 341 (6147): 742—6. PMID23950530. doi:10.1126/science.1237227.
Tan, G; Gyllenhaal, C; Soejarto, DD (2006). „Biodiversity as a source of anticancer drugs”. Current drug targets. 7 (3): 265—77. PMID16515527. doi:10.2174/138945006776054942.
Abal, M; Andreu, JM; Barasoain, I (2003). „Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action”. Current cancer drug targets. 3 (3): 193—203. PMID12769688. doi:10.2174/1568009033481967.
Bharadwaj, Rajnish; Yu, Hongtao (2004). „The spindle checkpoint, aneuploidy, and cancer”. Oncogene. 23 (11): 2016—27. PMID15021889. doi:10.1038/sj.onc.1207374.
Defrates, LJ; Hoehns, JD; Sakornbut, EL; Glascock, DG; Tew, AR (2005). „Antimuscarinic intoxication resulting from the ingestion of moonflower seeds”. The Annals of pharmacotherapy. 39 (1): 173—6. PMID15572604. doi:10.1345/aph.1D536.
Maines, M.; Trakshel, G. (1992). „Differential regulation of heme oxygenase isozymes by Sn- and Zn-protoporphyrins: possible relevance to suppression of hyperbilirubinemia”. Biochim. Biophys. Acta. 1131: 166—174. PMID1610897. doi:10.1016/0167-4781(92)90072-8.
Leatherbarrow, RJ (1990). „Using linear and non-linear regression to fit biochemical data”. Trends in Biochemical Sciences. 15 (12): 455—8. PMID2077683. doi:10.1016/0968-0004(90)90295-M.
Tseng, SJ; Hsu, JP (1990). „A comparison of the parameter estimating procedures for the Michaelis-Menten model”. Journal of Theoretical Biology. 145 (4): 457—64. PMID2246896. doi:10.1016/S0022-5193(05)80481-3.
Walsh, R.; Martin, E.; Darvesh, S. (2011). „Limitations of conventional inhibitor classifications”. Integrative Biology. Royal Society of Chemistry. 3 (12): 1197—1201. PMID22038120. doi:10.1039/c1ib00053e.
Walsh, R.; Martin, E.; Darvesh, S. (2007). „A versatile equation to describe reversible enzyme inhibition and activation kinetics: Modeling β-galactosidase and butyrylcholinesterase”. Biochimica et Biophysica Acta (BBA) – General Subjects. 1770 (5): 733—746. PMID17307293. doi:10.1016/j.bbagen.2007.01.001.
Adam, GC; Cravatt, BF; Sorensen, EJ (2001). „Profiling the specific reactivity of the proteome with non-directed activity-based probes”. Chemistry & Biology. 8 (1): 81—95. PMID11182321. doi:10.1016/S1074-5521(00)90060-7.
Poulin, R; Lu, L; Ackermann, B; Bey, P; Pegg, AE (1992). „Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites”. The Journal of Biological Chemistry. 267 (1): 150—8. PMID1730582.
Szedlacsek, SE; Duggleby, RG (1995). „Kinetics of slow and tight-binding inhibitors”. Enzyme Kinetics and Mechanism Part D: Developments in Enzyme Dynamics. Methods in Enzymology. 249. str. 144—80. ISBN978-0-12-182150-0. PMID7791610. doi:10.1016/0076-6879(95)49034-5.
Stone, SR; Morrison, JF (1986). „Mechanism of inhibition of dihydrofolate reductases from bacterial and vertebrate sources by various classes of folate analogues”. Biochimica et Biophysica Acta. 869 (3): 275—85. PMID3511964. doi:10.1016/0167-4838(86)90067-1.
Pick, FM; McGartoll, MA; Bray, RC (1971). „Reaction of formaldehyde and of methanol with xanthine oxidase”. European Journal of Biochemistry / FEBS. 18 (1): 65—72. PMID4322209. doi:10.1111/j.1432-1033.1971.tb01215.x.
Reardon, JE (1989). „Herpes simplex virus type 1 and human DNA polymerase interactions with 2'-deoxyguanosine 5'-triphosphate analogues. Kinetics of incorporation into DNA and induction of inhibition”. The Journal of Biological Chemistry. 264 (32): 19039—44. PMID2553730.
Glen RC, Allen SC; Allen (2003). „Ligand-protein docking: cancer research at the interface between biology and chemistry”. Curr. Med. Chem. 10 (9): 763—7. PMID12678780. doi:10.2174/0929867033457809.
Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP (2000). „Basis for effective combination cancer chemotherapy with antimetabolites”. Pharmacol. Ther. 87 (2—3): 227—53. PMID11008002. doi:10.1016/S0163-7258(00)00086-3.
Maggi, M; Filippi, S; Ledda, F; Magini, A; Forti, G (2000). „Erectile dysfunction: from biochemical pharmacology to advances in medical therapy”. European Journal of Endocrinology. Bioscientifica. 143 (2): 143—54. PMID10913932. doi:10.1530/eje.0.1430143.
McGuire, JJ (2003). „Anticancer antifolates: current status and future directions”. Current pharmaceutical design. 9 (31): 2593—613. PMID14529544. doi:10.2174/1381612033453712.
Katz, AH; Caufield, CE (2003). „Structure-based design approaches to cell wall biosynthesis inhibitors”. Current pharmaceutical design. 9 (11): 857—66. PMID12678870. doi:10.2174/1381612033455305.
Wegener G, Krause U (2002). „Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle”. Biochem. Soc. Trans. 30 (2): 264—270. PMID12023862. doi:10.1042/bst0300264.
Okar, DA; Lange, AJ (1999). „Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes”. BioFactors (Oxford, England). 10 (1): 1—14. PMID10475585. doi:10.1002/biof.5520100101.
Levilliers, J.; Péron; Arrio; Pudles (1970). „On the mechanism of action of proteolyticinhibitors: IV. Effect of 8murea on the stability of trypsin in trypsin-lnhibitor complexes”. Archives of Biochemistry and Biophysics. 140 (2): 474—483. PMID5528741. doi:10.1016/0003-9861(70)90091-3.
Smyth, TP (2004). „Substrate variants versus transition state analogues as noncovalent reversible enzyme inhibitors”. Bioorganic & Medicinal Chemistry. 12 (15): 4081—8. PMID15246086. doi:10.1016/j.bmc.2004.05.041.
Hartley, RW (1989). „Barnase and barstar: two small proteins to fold and fit together”. Trends in Biochemical Sciences. 14 (11): 450—4. PMID2696173. doi:10.1016/0968-0004(89)90104-7.
Serrano L, Kellis JT, Cann P, Matouschek A, Fersht AR (1992). „The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability”. J. Mol. Biol. 224 (3): 783—804. PMID1569557. doi:10.1016/0022-2836(92)90562-X.
Serrano L, Matouschek A, Fersht AR (1992). „The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure”. J. Mol. Biol. 224 (3): 805—18. PMID1569558. doi:10.1016/0022-2836(92)90563-Y.
Matouschek A, Serrano L, Fersht AR (1992). „The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure”. J. Mol. Biol. 224 (3): 819—35. PMID1569559. doi:10.1016/0022-2836(92)90564-Z.
Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991). „Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein”. Science. 253 (5022): 872—9. Bibcode:1991Sci...253..872S. PMID1678899. doi:10.1126/science.1678899.
Sussman JL, Harel M, Silman I (1993). „Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs”. Chem. Biol. Interact. 87 (1—3): 187—97. PMID8343975. doi:10.1016/0009-2797(93)90042-W.
S, Tan; Evans R; Singh B (2006). „Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops”. Amino Acids. 30 (2): 195—204. PMID16547651. doi:10.1007/s00726-005-0254-1.
Steinrücken HC, Amrhein N (1980). „The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase”. Biochemical and Biophysical Research Communications. 94 (4): 1207—12. PMID7396959. doi:10.1016/0006-291X(80)90547-1.
Lamberth C, Jeanmart S, Luksch T, Plant A (2013). „Current Challenges and Trends in the Discovery of Agrochemicals”. Science. 341 (6147): 742—6. PMID23950530. doi:10.1126/science.1237227.
Tan, G; Gyllenhaal, C; Soejarto, DD (2006). „Biodiversity as a source of anticancer drugs”. Current drug targets. 7 (3): 265—77. PMID16515527. doi:10.2174/138945006776054942.
Abal, M; Andreu, JM; Barasoain, I (2003). „Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action”. Current cancer drug targets. 3 (3): 193—203. PMID12769688. doi:10.2174/1568009033481967.
Bharadwaj, Rajnish; Yu, Hongtao (2004). „The spindle checkpoint, aneuploidy, and cancer”. Oncogene. 23 (11): 2016—27. PMID15021889. doi:10.1038/sj.onc.1207374.
Defrates, LJ; Hoehns, JD; Sakornbut, EL; Glascock, DG; Tew, AR (2005). „Antimuscarinic intoxication resulting from the ingestion of moonflower seeds”. The Annals of pharmacotherapy. 39 (1): 173—6. PMID15572604. doi:10.1345/aph.1D536.
Holmes, CF; Maynes, JT; Perreault, KR; Dawson, JF; James, MN (2002). „Molecular enzymology underlying regulation of protein phosphatase-1 by natural toxins”. Current medicinal chemistry. 9 (22): 1981—9. PMID12369866. doi:10.2174/0929867023368827.
Bischoff, K (2001). „The toxicology of microcystin-LR: occurrence, toxicokinetics, toxicodynamics, diagnosis and treatment”. Veterinary and human toxicology. 43 (5): 294—7. PMID11577938.
Maines, M.; Trakshel, G. (1992). „Differential regulation of heme oxygenase isozymes by Sn- and Zn-protoporphyrins: possible relevance to suppression of hyperbilirubinemia”. Biochim. Biophys. Acta. 1131: 166—174. PMID1610897. doi:10.1016/0167-4781(92)90072-8.
Geratz, J.; Tidwell, R.; Schwab, J.; Anderle, S.; Pryzwansky, K. (1990). „Sequential events in the pathogenesis of streptococcal cell wall-induced arthritis and their modulation by bis(5-amidino-2-benzimidazolyl)methane (BABIM)”. Am. J. Pathol. 136: 909—921. PMID2327474.
Fitzgerald, D. J.; Maggio, J. E.; Esler, W. P.; Stinson, E. R.; Jennings, J. M.; Ghilardi, J. R.; Mantyh, P. W.; Bush, A. I.; Moir, R. D.; Rosenkranz, K. M.; Tanzi, R. E. (1995). „Zinc and Alzheimer's disease”. Science. 268: 1920—1923. PMID7604268.
Meghnad Joshi; Waghmare Joshi; Priti Chougule; Aruna Kanase (2004). „Extract of Ricinus communis leaves mediated alterations in liver and kidney functions against single dose of CCl 4 induced liver necrosis in albino rats.”. Journal of Ecophysiology and Occupational Health. 4 (3—4): 169—173. ISSN0972-4397.
Shlyakhovenko, V. A.; Milinevskaya, V. A.; Zagorujko, L. I.; Yanish, Y. V.; Kozak, V. V.; Kokozey, V. N.; Chernova, A. S. (1997). „Antitumor activity of some gallium-containing coordination compounds”. Exp. Oncol. 19: 348—352. ISSN0204-3564.