Јакоб Бернули (Serbian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Јакоб Бернули" in Serbian language version.

refsWebsite
Global rank Serbian rank
3rd place
2nd place
3,503rd place
1,585th place
1st place
1st place
9,867th place
42nd place
989th place
4,125th place
low place
low place
124th place
599th place

bg.ac.rs

alas.matf.bg.ac.rs

bnf.fr

gallica.bnf.fr

  • Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the Journal des Savants (Ephemerides Eruditorum Gallicanæ), in the year (anno) 1685.**), Acta eruditorum, pp. 219–23. On p. 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series [a geometric series] is larger [than]. … if a=b, [the lender] will be owed more than 2½a and less than 3a.) If a=b, the geometric series reduces to the series for a × e, so 2.5 < e < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the Journal des Sçavans of 1685 at the bottom of page 314.)

books.google.com

  • Kruit, Pieter C. van der (2019). Jan Hendrik Oort: Master of the Galactic System (на језику: енглески). Springer. стр. 639. ISBN 978-3-030-17801-7. 
  • Bernoulli, Jakob (2006). Die Werke von Jakob Bernoulli: Bd. 2: Elementarmathematik (на језику: италијански). Springer Science & Business Media. стр. 92. ISBN 978-3-7643-1891-8. 
  • Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the Journal des Savants (Ephemerides Eruditorum Gallicanæ), in the year (anno) 1685.**), Acta eruditorum, pp. 219–23. On p. 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series [a geometric series] is larger [than]. … if a=b, [the lender] will be owed more than 2½a and less than 3a.) If a=b, the geometric series reduces to the series for a × e, so 2.5 < e < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the Journal des Sçavans of 1685 at the bottom of page 314.)
  • Livio, Mario (2003) [2002]. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number (First trade paperback изд.). New York City: Broadway Books. стр. 116—17. ISBN 0-7679-0816-3. 

hls-dhs-dss.ch

  • Nagel, Fritz (11. 6. 2004). „Bernoulli, Jacob”. Historisches Lexikon der Schweiz. Приступљено 20. 5. 2016. 

jehps.net

  • Pfeiffer, Jeanne (новембар 2006). „Jacob Bernoulli” (PDF). Journal Électronique d'Histoire des Probabilités et de la Statistique. Приступљено 20. 5. 2016. 

st-and.ac.uk

www-gap.dcs.st-and.ac.uk

www-history.mcs.st-and.ac.uk

  • J J O'Connor and E F Robertson. „The number e”. St Andrews University. Приступљено 2. 11. 2016. 

web.archive.org