Mario Cortina Borja; John Haigh (September 2007). "The Birthday Problem". Significance. Royal Statistical Society. 4 (3): 124-127. doi:10.1111/j.1740-9713.2007.00246.x.
Suzuki, K.; Tonien, D. (2006). "Birthday Paradox for Multi-collisions". Rhee M.S., Lee B. (Ed.). Lecture Notes in Computer Science, vol 4296. Berlin: Springer. doi:10.1007/11927587_5. Information Security and Cryptology – ICISC 2006.
In reality, birthdays are not evenly distributed throughout the year; there are more births per day in some seasons than in others, but for the purposes of this problem the distribution is treated as uniform. In particular, many children are born in the summer, especially the months of August and September (for the northern hemisphere) [1], and in the U.S. it has been noted that many children are conceived around the holidays of Christmas and New Year's Day.[1] Also, because hospitals rarely schedule caesarian sections and induced labor on the weekend, more people are born between Tuesday and Friday than on weekends;[1] where many of the people share a birth year (e.g. a class in a school), this creates a tendency toward particular dates. In Sweden 9.3% of the population is born in March and 7.3% in November when a uniform distribution would give 8.3% Swedish statistics board. See also:
In reality, birthdays are not evenly distributed throughout the year; there are more births per day in some seasons than in others, but for the purposes of this problem the distribution is treated as uniform. In particular, many children are born in the summer, especially the months of August and September (for the northern hemisphere) [1], and in the U.S. it has been noted that many children are conceived around the holidays of Christmas and New Year's Day.[1] Also, because hospitals rarely schedule caesarian sections and induced labor on the weekend, more people are born between Tuesday and Friday than on weekends;[1] where many of the people share a birth year (e.g. a class in a school), this creates a tendency toward particular dates. In Sweden 9.3% of the population is born in March and 7.3% in November when a uniform distribution would give 8.3% Swedish statistics board. See also:
In reality, birthdays are not evenly distributed throughout the year; there are more births per day in some seasons than in others, but for the purposes of this problem the distribution is treated as uniform. In particular, many children are born in the summer, especially the months of August and September (for the northern hemisphere) [1], and in the U.S. it has been noted that many children are conceived around the holidays of Christmas and New Year's Day.[1] Also, because hospitals rarely schedule caesarian sections and induced labor on the weekend, more people are born between Tuesday and Friday than on weekends;[1] where many of the people share a birth year (e.g. a class in a school), this creates a tendency toward particular dates. In Sweden 9.3% of the population is born in March and 7.3% in November when a uniform distribution would give 8.3% Swedish statistics board. See also:
In reality, birthdays are not evenly distributed throughout the year; there are more births per day in some seasons than in others, but for the purposes of this problem the distribution is treated as uniform. In particular, many children are born in the summer, especially the months of August and September (for the northern hemisphere) [1], and in the U.S. it has been noted that many children are conceived around the holidays of Christmas and New Year's Day.[1] Also, because hospitals rarely schedule caesarian sections and induced labor on the weekend, more people are born between Tuesday and Friday than on weekends;[1] where many of the people share a birth year (e.g. a class in a school), this creates a tendency toward particular dates. In Sweden 9.3% of the population is born in March and 7.3% in November when a uniform distribution would give 8.3% Swedish statistics board. See also: