Analysis of information sources in references of the Wikipedia article "Matematik tarihi" in Turkish language version.
766'da Araplar tarafından Sindhind olarak bilinen astronomik-matematiksel bir çalışmanın Hindistan'dan Bağdat'a getirildiğini öğreniyoruz. Genelde bunun Brahmasphuta Siddhanta olduğu düşünülse de Surya Siddhanata da olabilir. Birkaç yıl sonra, belki yaklaşık 775'te, Siddhanata Arapçaya çevrildi ve kısa süre sonra (y. 780'de) Batlamyus'un astrolojik Tetrabiblos adlı eseri Yunanca'dan Arapça'ya çevrildi.
Size verebileceğim bir örnek, Hint Mādhava'nın geometrik ve cebirsel argümanlar kullanarak trigonometrik fonksiyonların sonsuz güç serilerinin yaklaşık MS 1400'de gösterimi ile ilgilidir. Bu, 1830'larda Charles Whish tarafından İngilizce olarak ilk kez tanımlandığında, Hintlerin hesabı keşfi olarak müjdelendi. Bu iddia ve Mādhava'nın başarıları, Batılı tarihçiler tarafından, muhtemelen ilk başta bir Hintin hesabı keşfettiğini kabul edemedikleri için, ancak daha sonra kimse Whish'in yayınlanan makalesinin yer aldığı Kraliyet Asya Toplumu İşlemlerini okumadığı için göz ardı edildi. Konu 1950'lerde yeniden su yüzüne çıktı ve şimdi Sanskritçe metinleri düzgün bir şekilde düzenledik ve Mādhava'nın diziyi hesaplama olmadan türetmesinin akıllıca yolunu anlıyoruz; ancak birçok tarihçi, problemi ve çözümünü kalkülüs dışında herhangi bir terimle kavramayı hala imkansız buluyor ve Mādhava'nın bulduğu şeyin analiz olduğunu ilan ediyor. Bu durumda, Mādhava'nın matematiğinin zarafeti ve parlaklığı, alternatif ve güçlü bir çözüm keşfettiği bir problemin mevcut matematiksel çözümünün altına gömüldükçe çarpıtılmaktadır.
Nicole Oresme ... harmonik serinin ıraksamasını kanıtlayan ilk kişiydi (y. 1350). Sonuçları birkaç yüzyıl boyunca kayboldu ve sonuçlar, 1647'de İtalyan matematikçi Pietro Mengoli ve 1687'de İsviçreli matematikçi Johann Bernoulli tarafından tekrar kanıtlandı.
Size verebileceğim bir örnek, Hint Mādhava'nın geometrik ve cebirsel argümanlar kullanarak trigonometrik fonksiyonların sonsuz güç serilerinin yaklaşık MS 1400'de gösterimi ile ilgilidir. Bu, 1830'larda Charles Whish tarafından İngilizce olarak ilk kez tanımlandığında, Hintlerin hesabı keşfi olarak müjdelendi. Bu iddia ve Mādhava'nın başarıları, Batılı tarihçiler tarafından, muhtemelen ilk başta bir Hintin hesabı keşfettiğini kabul edemedikleri için, ancak daha sonra kimse Whish'in yayınlanan makalesinin yer aldığı Kraliyet Asya Toplumu İşlemlerini okumadığı için göz ardı edildi. Konu 1950'lerde yeniden su yüzüne çıktı ve şimdi Sanskritçe metinleri düzgün bir şekilde düzenledik ve Mādhava'nın diziyi hesaplama olmadan türetmesinin akıllıca yolunu anlıyoruz; ancak birçok tarihçi, problemi ve çözümünü kalkülüs dışında herhangi bir terimle kavramayı hala imkansız buluyor ve Mādhava'nın bulduğu şeyin analiz olduğunu ilan ediyor. Bu durumda, Mādhava'nın matematiğinin zarafeti ve parlaklığı, alternatif ve güçlü bir çözüm keşfettiği bir problemin mevcut matematiksel çözümünün altına gömüldükçe çarpıtılmaktadır.
Hint matematiği tartışmalarında "türev kavramı [Hindistan'da] Manjula zamanında (... 10. yüzyılda) anlaşıldı" [Joseph 1991, 300] gibi iddialara rastlamak alışılmadık bir durum değildir. "Madhava'nın matematiksel analizin kurucusu olduğunu düşünebiliriz" (Joseph 1991, 293) veya Bhaskara II'nin "diferansiyel analiz ilkesinin keşfinde Newton ve Leibniz'in öncüsü" olduğu iddia edilebilir (Bag 1979, 294) .... Özellikle erken Avrupa hesabı ile Keralese'nin güç serileri üzerine çalışması arasındaki benzer noktalar, 15. yüzyılda veya sonrasında Malabar kıyılarından Latin bilim adamlarına matematiksel fikirlerin olası aktarımına dair önerilere bile ilham vermiştir. Dünya (örneğin, (Bag 1979, 285)) .... Bununla birlikte, Sanskritçe (veya Malayalam) ve Latin matematiğinin benzerliğine yapılan bu tür bir vurgunun, orjinini görme ve kavrama yeteneğimizi tamamen azaltma riski taşıdığı akılda tutulmalıdır. Hint'in 'diferansiyel hesap ilkesinin keşfinden' bahsetmek, Sinüs'teki değişiklikleri kosinüs aracılığıyla ifade etmek için Hint tekniklerinin ya da tam tersi, gördüğümüz örneklerde olduğu gibi, belirli trigonometrik bağlam içinde kaldığı gerçeğini biraz gizler. Diferansiyel 'ilke', keyfi fonksiyonlara genelleştirilmemiştir - aslında, keyfi bir fonksiyonun açık kavramı, türevinden veya türevi almak için bir algoritmadan bahsetmemek, burada alakasızdır.
Size verebileceğim bir örnek, Hint Mādhava'nın geometrik ve cebirsel argümanlar kullanarak trigonometrik fonksiyonların sonsuz güç serilerinin yaklaşık MS 1400'de gösterimi ile ilgilidir. Bu, 1830'larda Charles Whish tarafından İngilizce olarak ilk kez tanımlandığında, Hintlerin hesabı keşfi olarak müjdelendi. Bu iddia ve Mādhava'nın başarıları, Batılı tarihçiler tarafından, muhtemelen ilk başta bir Hintin hesabı keşfettiğini kabul edemedikleri için, ancak daha sonra kimse Whish'in yayınlanan makalesinin yer aldığı Kraliyet Asya Toplumu İşlemlerini okumadığı için göz ardı edildi. Konu 1950'lerde yeniden su yüzüne çıktı ve şimdi Sanskritçe metinleri düzgün bir şekilde düzenledik ve Mādhava'nın diziyi hesaplama olmadan türetmesinin akıllıca yolunu anlıyoruz; ancak birçok tarihçi, problemi ve çözümünü kalkülüs dışında herhangi bir terimle kavramayı hala imkansız buluyor ve Mādhava'nın bulduğu şeyin analiz olduğunu ilan ediyor. Bu durumda, Mādhava'nın matematiğinin zarafeti ve parlaklığı, alternatif ve güçlü bir çözüm keşfettiği bir problemin mevcut matematiksel çözümünün altına gömüldükçe çarpıtılmaktadır.
Size verebileceğim bir örnek, Hint Mādhava'nın geometrik ve cebirsel argümanlar kullanarak trigonometrik fonksiyonların sonsuz güç serilerinin yaklaşık MS 1400'de gösterimi ile ilgilidir. Bu, 1830'larda Charles Whish tarafından İngilizce olarak ilk kez tanımlandığında, Hintlerin hesabı keşfi olarak müjdelendi. Bu iddia ve Mādhava'nın başarıları, Batılı tarihçiler tarafından, muhtemelen ilk başta bir Hintin hesabı keşfettiğini kabul edemedikleri için, ancak daha sonra kimse Whish'in yayınlanan makalesinin yer aldığı Kraliyet Asya Toplumu İşlemlerini okumadığı için göz ardı edildi. Konu 1950'lerde yeniden su yüzüne çıktı ve şimdi Sanskritçe metinleri düzgün bir şekilde düzenledik ve Mādhava'nın diziyi hesaplama olmadan türetmesinin akıllıca yolunu anlıyoruz; ancak birçok tarihçi, problemi ve çözümünü kalkülüs dışında herhangi bir terimle kavramayı hala imkansız buluyor ve Mādhava'nın bulduğu şeyin analiz olduğunu ilan ediyor. Bu durumda, Mādhava'nın matematiğinin zarafeti ve parlaklığı, alternatif ve güçlü bir çözüm keşfettiği bir problemin mevcut matematiksel çözümünün altına gömüldükçe çarpıtılmaktadır.
Nicole Oresme ... harmonik serinin ıraksamasını kanıtlayan ilk kişiydi (y. 1350). Sonuçları birkaç yüzyıl boyunca kayboldu ve sonuçlar, 1647'de İtalyan matematikçi Pietro Mengoli ve 1687'de İsviçreli matematikçi Johann Bernoulli tarafından tekrar kanıtlandı.