Otto Hölder (Turkish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Otto Hölder" in Turkish language version.

refsWebsite
Global rank Turkish rank
451st place
1,743rd place
2nd place
4th place
1,547th place
1,164th place
163rd place
161st place
6th place
6th place

ams.org

ams.org

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", Horváth, János (Ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., 14, Springer, Berlin, ss. 245-294, doi:10.1007/978-3-540-30721-1_9, MR 2547513 ; see p. 248
  • Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", Mathematical Inequalities & Applications, 1 (1), ss. 69-83, doi:10.7153/mia-01-05, MR 1492911 
  • Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", Archiv der Mathematik, 100 (6), ss. 561-570, doi:10.1007/s00013-013-0522-3, MR 3069109, under the additional assumption that exists, this inequality was already obtained by Hölder in 1889 

genealogy.ams.org

archive.org

doi.org

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", Horváth, János (Ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., 14, Springer, Berlin, ss. 245-294, doi:10.1007/978-3-540-30721-1_9, MR 2547513 ; see p. 248
  • Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", Mathematical Inequalities & Applications, 1 (1), ss. 69-83, doi:10.7153/mia-01-05, MR 1492911 
  • Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", Archiv der Mathematik, 100 (6), ss. 561-570, doi:10.1007/s00013-013-0522-3, MR 3069109, under the additional assumption that exists, this inequality was already obtained by Hölder in 1889 

google.com

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", Horváth, János (Ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., 14, Springer, Berlin, ss. 245-294, doi:10.1007/978-3-540-30721-1_9, MR 2547513 ; see p. 248

st-andrews.ac.uk

mathshistory.st-andrews.ac.uk