Bremner, Michael; Jozsa, Richard; Shepherd, Dan (2011). Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. A. 467 (2126): 459—472. arXiv:1005.1407. Bibcode:2011RSPSA.467..459B. doi:10.1098/rspa.2010.0301.
Nikolopoulos, Georgios M.; Brougham, Thomas (2016). Decision and function problems based on boson sampling. Physical Review A. 94: 012315. arXiv:1607.02987. doi:10.1103/PhysRevA.94.012315.
Nikolopoulos, Georgios M. (2019). Cryptographic one-way function based on boson sampling. Quantum Information Processing. 18 (8): 259. arXiv:1607.02987. doi:10.1007/s11128-019-2372-9.
Bremner, Michael; Jozsa, Richard; Shepherd, Dan (2011). Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. A. 467 (2126): 459—472. arXiv:1005.1407. Bibcode:2011RSPSA.467..459B. doi:10.1098/rspa.2010.0301.
Jerrum, Mark; Sinclair, Alistair; Vigoda, Eric (2001). A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM. 51 (4): 671—697. CiteSeerX10.1.1.18.9466. doi:10.1145/1008731.1008738.
Nikolopoulos, Georgios M.; Brougham, Thomas (2016). Decision and function problems based on boson sampling. Physical Review A. 94: 012315. arXiv:1607.02987. doi:10.1103/PhysRevA.94.012315.
Nikolopoulos, Georgios M. (2019). Cryptographic one-way function based on boson sampling. Quantum Information Processing. 18 (8): 259. arXiv:1607.02987. doi:10.1007/s11128-019-2372-9.
Banchi, Leonardo; Fingerhuth, Mark; Babej, Tomas; Ing, Christopher; Arrazola, Juan Miguel (2020). Molecular docking with Gaussian Boson Sampling. Science Advances. 6 (23). doi:10.1126/sciadv.aax1950.
Bremner, Michael; Jozsa, Richard; Shepherd, Dan (2011). Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. A. 467 (2126): 459—472. arXiv:1005.1407. Bibcode:2011RSPSA.467..459B. doi:10.1098/rspa.2010.0301.
Jerrum, Mark; Sinclair, Alistair; Vigoda, Eric (2001). A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM. 51 (4): 671—697. CiteSeerX10.1.1.18.9466. doi:10.1145/1008731.1008738.