АМРА-рецептор (Ukrainian Wikipedia)

Analysis of information sources in references of the Wikipedia article "АМРА-рецептор" in Ukrainian language version.

refsWebsite
Global rank Ukrainian rank
2nd place
4th place
1st place
1st place
low place
low place
6,663rd place
6,498th place
6th place
6th place
4th place
5th place
low place
low place
low place
low place
149th place
211th place
5th place
9th place
2,769th place
2,167th place
2,814th place
1,468th place
222nd place
164th place
1,293rd place
539th place
low place
low place
low place
low place

archive.org

aspetjournals.org

molpharm.aspetjournals.org

jpet.aspetjournals.org

pharmrev.aspetjournals.org

benthamdirect.org

brain-map.org

cell.com

  • Schiffer HH; Swanson GT, and Heinemann SF (1997). Rat GluR7 and a carboxyterminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron. 19 (5): 1141—46. doi:10.1016/S0896-6273(00)80404-3. {{cite journal}}: Зовнішнє посилання в |journal= (довідка)

doi.org

  • Erreger K; Chen PE, Wyllie DJ, and Traynelis SF (2004). Glutamate receptor gating. Crit Rev Neurobiol. 16 (3): 187—224. doi:10.1615/CritRevNeurobiol.v16.i3.
  • Honore T, Lauridsen J, Krogsgaard-Larsen P (1982). The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. Journal of Neurochemistry. 38 (1): 173—178. doi:10.1111/j.1471-4159.1982.tb10868.x. PMID 6125564.
  • Carroll RC; Beattie EC, Xia H, Luscher C, Altschuler Y, Nichol RA, Malenka RC and Zastrow M (1999). Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA. 96 (24): 14112—7. doi:10.1073/pnas.96.24.14112.
  • Collingridge GL; Olsen RW, Peters J, and Spedding M (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology. 56 (1): 2—5. doi:10.1016/j.neuropharm.2008.06.063. {{cite journal}}: Зовнішнє посилання в |journal= (довідка)
  • Shi SH; Hayashi Y, Petralia RS, et al (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science. 284 (5421): 1811—6. doi:10.1016/S0166-2236(02)02270-1.
  • Mayer ML (2005). Glutamate receptor ion channels. Curr Opin Neurobiol. 15 (3): 282—8. doi:10.1016/j.conb.2005.05.004.
  • Song I; Huganir RL (2002). Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25 (11): 578—88. doi:10.1016/S0166-2236(02)02270-1.
  • Greger IH; Ziff EB, Penn AC (2007). Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 30 (8): 407—16. doi:10.1016/j.tins.2007.06.005.
  • Mansour M; Nagarajan N, Nehring RB, Clements JD, and Rosenmund C (2001). Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron. 32: 841—53. doi:10.1016/S0896-6273(01)00520-7.
  • Greger IH; Khatri L, Ziff EB (2002). RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron. 34 (5): 759—72. doi:10.1016/S0896-6273(02)00693-1.
  • Penn AC; Williams SR, and Greger IH (2008). Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO J. 27 (22): 3056—68. doi:10.1038/emboj.2008.222.
  • Ayalon G; Segev E, Elgavish S, and Stern-Bach Y (2005). Two regions in the Nterminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem. 280 (15): 15053—60. doi:10.1074/jbc.M408413200.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Kuusinen A; Abele R, Madden DR, and Keinänen K (1999). Oligomerization and ligand-binding properties of the ectodomain of the alpha-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor subunit GluRD. J Biol Chem. 274 (41): 28937—43. doi:10.1074/jbc.274.41.28937.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Stern-Bach Y; Bettler B, Hartley M, Sheppard PO, O’Hara PJ, and Heinemann SF (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron. 13 (6): 1345—57. doi:10.1016/0896-6273(94)90420-0.
  • Sobolevsky AI; Rosconi MP, and Gouaux E (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 462: 745—56. doi:10.1038/nature08624.
  • Hansen KB; Yuan H, and Traynelis SF (2007). Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr Opin Neurobiol. 17 (3): 281—8. doi:10.1016/j.conb.2007.03.014.
  • Weston МС; Schuck P, Ghosal A, Rosenmund C, and Mayer ML (2006). Conformational restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol. 13: 1120—7. doi:10.1038/nsmb1178.
  • Mosbacher J; Schoepfer R, Monyer H, Burnashev N, Seeburg PH, and Ruppersberg JP (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science. 266 (5187): 1059—62. doi:10.1126/science.7973663.
  • Paoletti P; Perin-Dureau F, Fayyazuddin A, Le Goff A, Callebaut I, and Neyton J (2000). Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron. 28 (3): 911—25. doi:10.1016/S0896-6273(00)00163-X.
  • Clayton A; Siebold C, Gilbert RJ, Sutton GC, Harlos K, McIlhinney RA, Jones EY, and Aricescu AR (2009). Crystal structure of the GluR2 amino-terminal domain provides insights into the architecture and assembly of ionotropic glutamate receptors. J Mol Biol. 392 (5): 1125—32. doi:10.1016/j.jmb.2009.07.082.
  • Jin R; Singh SK, Gu S, Furukawa H, Sobolevsky AI, Zhou J, Jin Y, and Gouaux E (2009). Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J. 28 (12): 1812—23. doi:10.1038/emboj.2009.140.
  • Karakas E; Simorowski N, and Furukawa H (2009). Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28 (24): 3910—20. doi:10.1038/emboj.2009.338.
  • Kumar J; Schuck P, Jin R, and Mayer ML (2009). The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nat Struct Mol Biol. 16 (6): 631—8. doi:10.1038/nsmb.1613.
  • Leuschner WD; and Hoch W (1999). Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J Biol Chem. 274 (24): 16907—16. doi:10.1074/jbc.274.24.16907.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Ayalon G; and Stern-Bach Y (2001). Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron. 31 (1): 103—13. doi:10.1016/S0896-6273(01)00333-6.
  • Meddows E; Le Bourdelles B, Grimwood S, Wafford K, Sandhu S, Whiting P, and McIlhinney RA (2001). Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem. 276 (22): 18795—803. doi:10.1074/jbc.M101382200.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Gielen M; Siegler Retchless B, Mony L, Johnson JW, and Paoletti P (2009). Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459 (7247): 703—7. doi:10.1038/nature07993.
  • Yuan H; Hansen KB, Vance KM, Ogden KK, and Traynelis SF (2009). Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci. 29 (39): 12045—58. doi:10.1523/JNEUROSCI.1365-09.2009.
  • O’Brien RJ; Xu D, Petralia RS, Steward O, Huganir RL, and Worley P (1999). Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron. 23 (2): 309—23. doi:10.1016/S0896-6273(00)80782-5.
  • Sia GM; Béïque JC, Rumbaugh G, Cho R, Worley PF, and Huganir RL (2007). Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron. 55 (1): 87—102. doi:10.1016/j.neuron.2007.06.020.
  • Hollmann M; Maron C, and Heinemann S (1994). N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluRI. Neuron. 13 (6): 1331—43. doi:10.1016/0896-6273(94)90419-7.
  • Bass BL (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 71: 817—46. doi:10.1146/annurev.biochem.71.110601.135501.
  • Panchenko VA; Glasser CR, Partin KM, and Mayer ML (1999). Amino acid substitutions in the pore of rat glutamate receptors at sites influencing block by polyamines. J Physiol. 520 (2): 337—57. doi:10.1111/j.1469-7793.1999.t01-1-00337.x.
  • Uchino S; Wada H, Honda S, Nakamura Y, Ondo Y, Uchiyama T, Tsutsumi M, Suzuki E, Hirasawa T, and Kohsaka S (2006). Direct interaction of post-synaptic density-95/Dlg/ZO-1 domain-containing synaptic molecule Shank3 with GluR1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor. J Neurochem. 97 (4): 1203—14. doi:10.1111/j.1471-4159.2006.03831.x.
  • Serulle Y; Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, and Ziff EB (2007). A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron. 56 (4): 670—88. doi:10.1016/j.neuron.2007.09.016.
  • Correia SS; Duarte CB, Faro CJ, Pires EV, and Carvalho AL (2003). Protein kinase C gamma associates directly with the GluR4 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit. Effect on receptor phosphorylation. J Biol Chem. 278 (8): 6307—13. doi:10.1074/jbc.M205587200.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Derkach V; Barria A, and Soderling TR (1999). Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A. 96 (6): 3269—74. doi:10.1073/pnas.96.6.3269.
  • Prieto ML; and Wollmuth LP (2010). Gating modes in AMPA receptors. J Neurosci. 30 (12): 4449—59. doi:10.1523/JNEUROSCI.5613-09.2010.
  • Jin R; Banke TG, Mayer ML, Traynelis SF, and Gouaux E (2003). Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci. 6: 803—10. doi:10.1038/nn1091.
  • Sekiguchi M; Nishikawa K, Aoki S, and Wada K (2002). A desensitization-selective potentiator of AMPA-type glutamate receptors. Br J Pharmacol. 136 (7): 1033—41. doi:10.1038/sj.bjp.0704804.
  • Tomita S; Adesnik H, Sekiguchi M, Zhang W, Wada K, Howe JR, Nicoll RA, and Bredt DS (2005). Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature. 435: 1052—58. doi:10.1038/nature03624.
  • Tomita S; Fukata M, Nicoll RA, and Bredt DS (2004). Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science. 303 (5663): 1508—11. doi:10.1126/science.1090262.
  • Vandenberghe W; Nicoll RA, and Bredt DS (2005). Stargazin is an AMPA receptor auxiliary subunit. Proc Natl Acad Sci U S A. 102 (2): 485—90. doi:10.1073/pnas.0408269102.
  • Milstein AD; and Nicoll (2009). TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains. Proc Natl Acad Sci U S A. 106 (27): 11348—51. doi:10.1073/pnas.0905570106.
  • Sager C; Terhag J, Kott S, and Hollmann M (2009). C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function. J Biol Chem. 284 (47): 32413—24. doi:10.1074/jbc.M109.039891.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Chen L; Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, and Nicoll RA (2000). Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature. 408: 936—43. doi:10.1038/35050030.
  • Yamazaki M; Ohno-Shosaku T, Fukaya M, Kano M, Watanabe M, and Sakimura K (2004). A novel action of stargazin as an enhancer of AMPA receptor activity. Neurosci Res. 50 (4): 369—74. doi:10.1016/j.neures.2004.10.002.
  • Priel A; Kolleker A, Ayalon G, Gillor M, Osten P, and Stern-Bach Y (2005). Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci. 25 (10): 2682—86. doi:10.1523/JNEUROSCI.4834-04.2005.
  • Armstrong N; and Gouaux E (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron. 28 (1): 165—81. doi:10.1016/S0896-6273(00)00094-5.
  • Tyler, Marshall W.; Yourish, Harmony B.; Ionescu, Dawn F.; Haggarty, Stephen J. (21 квітня 2017). Classics in Chemical Neuroscience: Ketamine. ACS chemical neuroscience. doi:10.1021/acschemneuro.7b00074. ISSN 1948-7193. PMID 28418641.
  • Donevan SD; Rogawski MA (1998). Allosteric regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors by thiocyanate and cyclothiazide at a common modulatory site distinct from that of 2,3-benzodiazepines. Neuroscience. 87 (3): 615—29. doi:10.1016/S0306-4522(98)00109-2.
  • Banke TG; Schousboe A, and Pickering DS (1997). Comparison of the agonist binding site of homomeric, heteromeric, and chimeric GluR1(o) and GluR3(o) AMPA receptors. J Neurosci Res. 49 (2): 176—85. doi:10.1002/(SICI)1097-4547(19970715)49:2<176::AID-JNR6>3.0.CO;2-6.
  • Jin R; Horning M, Mayer ML, and Gouaux E (2002). Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry. 41 (52): 15635—43. doi:10.1021/bi020583k.
  • Zhang W; Robert A, Vogensen SB, and Howe JR (2006). The relationship between agonist potency and AMPA receptor kinetics. Biophys J. 91 (4): 1336—46. doi:10.1529/biophysj.106.084426.
  • Schiffer HH; Swanson GT, and Heinemann SF (1997). Rat GluR7 and a carboxyterminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron. 19 (5): 1141—46. doi:10.1016/S0896-6273(00)80404-3. {{cite journal}}: Зовнішнє посилання в |journal= (довідка)
  • Nakanishi N; Shneider NA, and Axel R (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron. 5 (5): 569—81. doi:10.1016/0896-6273(90)90212-X.
  • Vogensen SB; Jensen HS, Stensbøl TB, Frydenvang K, Bang-Andersen B, Johansen TN, Egebjerg J, and Krogsgaard-Larsen P (2000). Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist. Chirality. 12 (10): 705—13. doi:10.1002/1520-636X(2000)12:10<705::AID-CHIR2>3.0.CO;2-9. {{cite journal}}: Зовнішнє посилання в |journal= (довідка)
  • Holm MM; Lunn ML, Traynelis SF, Kastrup JS, and Egebjerg J (2005). Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2. Proc Natl Acad Sci U S A. 102 (34): 12053—58. doi:10.1073/pnas.0505522102.
  • Kizelsztein P; Eisenstein M, Strutz N, Hollmann M, and Teichberg VI (2000). Mutant Cycle Analysis of the Active and Desensitized States of an AMPA Receptor Induced by Willardiines. Biochemistry. 39 (42): 12819—27. doi:10.1021/bi000962i.
  • Greenwood JR; Mewett KN, Allan RD, Martín BO, and Pickering DS (2006). 3-hydroxypyridazine 1-oxides as carboxylate bioisosteres: a new series of subtype-selective AMPA receptor agonists. Neuropharmacology. 51 (1): 52—9. doi:10.1016/j.neuropharm.2006.02.013.
  • Bjerrum EJ; Kristensen AS, Pickering DS, Greenwood JR, Nielsen B, Liljefors T, Schousboe A, Bra¨uner-Osborne H, and Madsen U (2003). Design, Synthesis, and Pharmacology of a Highly Subtype-Selective GluR1/2 Agonist, (RS)-2-Amino-3-(4-chloro-3-hydroxy-5-isoxazolyl)propionic Acid (Cl-HIBO). J Med Chem. 46 (11): 2246—49. doi:10.1021/jm020588f.
  • Campiani G; Morelli E, Nacci V, Fattorusso C, Ramunno A, Novellino E, Greenwood J, Liljefors T, Griffiths R, Sinclair C, Reavy H, Kristensen AS, Pickering DS, Schousboe A, Cagnotto A, Fumagalli E, and Mennini T (2001). Characterization of the 1H-cyclopentapyrimidine-2,4(1H,3H)-dione derivative (S)-CPW399 as a novel, potent, and subtype-selective AMPA receptor full agonist with partial desensitization properties. J Med Chem. 44 (26): 4501—4. doi:10.1021/jm015552m.
  • Stensbøl TB; Borre L, Johansen TN, Egebjerg J, Madsen U, Ebert B, and Krogsgaard-Larsen P (1999). Resolution, absolute stereochemistry and molecular pharmacology of the enantiomers of ATPA. Eur J Pharmacol. 380 (2-3): 153—62. doi:10.1016/S0014-2999(99)00512-9.
  • Brehm L; Greenwood JR, Hansen KB, Nielsen B, Egebjerg J, Stensbøl TB, Bräuner-Osborne H, Sløk FA, Kronborg TT, and Krogsgaard-Larsen P (2003). (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propion ic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology. J Med Chem. 46 (8): 1350—58. doi:10.1021/jm0204441.
  • Stensbøl TB; Jensen HS, Nielsen B, Johansen TN, Egebjerg J, Frydenvang K, and Krogsgaard-Larsen P (2001). Stereochemistry and molecular pharmacology of (S)-thio-ATPA, a new potent and selective GluR5 agonist. Eur J Pharmacol. 411 (3): 245—53. doi:10.1016/S0014-2999(00)00916-X.
  • Jensen AA; Christesen T, Bølcho U, Greenwood JR, Postorino G, Vogensen SB, Johansen TN, Egebjerg J, Bra¨uner-Osborne H, and Clausen RP (2007). Functional Characterization of Tet-AMPA [Tetrazolyl-2-amino-3-(3-hydroxy-5-methyl- 4-isoxazolyl)propionic Acid] Analogues at Ionotropic Glutamate Receptors GluR1−GluR4. The Molecular Basis for the Functional Selectivity Profile of 2-Bn-Tet-AMPA. J Med Chem. 50 (17): 4177—85. doi:10.1021/jm070532r.
  • Szymańska Е; Pickering DS, Nielsen B, and Johansen TN (2009). 3-Substituted phenylalanines as selective AMPA- and kainate receptor ligands. Bioorg Med Chem. 17 (17): 6390—401. doi:10.1016/j.bmc.2009.07.021.
  • Kott S; Sager C, Tapken D, Werner M, and HollmannM (2009). Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins gamma2, gamma3, gamma4, and gamma8. Neuroscience. 158 (1): 78—88. doi:10.1016/j.neuroscience.2007.12.047.
  • Tygesen CK; Jørgensen M, and Andersen PH (1995). The importance of two specific domains in ligand binding to the AMPA/kainate glutamate receptors GluR2 and GluR6. FEBS Lett. 363 (1-2): 184—8. doi:10.1016/0014-5793(95)00315-Z.
  • Andersen PH; Tygesen CK, Rasmussen JS, Søegaard-Nielsen L, Hansen A, Hansen K, Kiemer A, and Stidsen CE (1996). Stable expression of homomeric AMPA-selective glutamate receptors in BHK cells. Eur J Pharmacol. 311 (1): 95—100. doi:10.1016/0014-2999(96)00399-8.
  • Kasper C; Pickering DS, Mirza O, Olsen L, Kristensen AS, Greenwood JR, Liljefors T, Schousboe A, Wätjen F, Gajhede M, Sigurskjold BW, and Kastrup JS (2006). The Structure of a Mixed GluR2 Ligand-binding Core Dimer in Complex with (S)-Glutamate and the Antagonist (S)-NS1209. J Mol Biol. 357 (4): 1184—1201. doi:10.1016/j.jmb.2006.01.024.
  • Prescott C; Weeks AM, Staley KJ, and Partin KM (2006). Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett. 402 (1-2): 108—112. doi:10.1016/j.neulet.2006.03.051.
  • Simmons RM; Li DL, Hoo KH, Deverill M, Ornstein PL, and Iyengar S (1998). Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology. 37 (1): 25—36. doi:10.1016/S0028-3908(97)00188-3.
  • Jones CK; Alt A, Ogden AM, Bleakman D, Simmons RM, Iyengar S, Dominguez E, Ornstein PL, and Shannon HE (2006). Antiallodynic and antihyperalgesic effects of selective competitive GLUK5 (GluR5) ionotropic glutamate receptor antagonists in the capsaicin and carrageenan models in rats. J Pharmacol Exp Ther. 319 (1): 396—404. doi:10.1124/jpet.106.105601.
  • Bleakman D; Ogden AM, Ornstein PL, and Hoo K (1999). Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons. Eur J Pharmacol. 378 (3): 331—7. doi:10.1016/S0014-2999(99)00478-1.
  • Dolman NP; More JC, Alt A, Knauss JL, Pentika¨inen OT, Glasser CR, Bleakman D, Mayer ML, Collingridge GL, and Jane DE (2007). Synthesis and pharmacological characterization of N3-substituted willardiine derivatives: role of the substituent at the 5-position of the uracil ring in the development of highly potent and selective GLUK5 kainate receptor antagonists. J Med Chem. 50 (7): 1558—70. doi:10.1021/jm061041u.
  • Gitto R; Barreca ML, De Luca L, De Sarro G, Ferreri G, Quartarone S, Russo E, Constanti A, and Chimirri A (2003). Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist. J Med Chem. 46 (1): 197—200. doi:10.1021/jm0210008.
  • Cokić B; and Stein V (2008). Stargazin modulates AMPA receptor antagonism. Neuropharmacology. 54 (7): 1062—70. doi:10.1016/j.neuropharm.2008.02.012.
  • Balannik V; Menniti FS, Paternain AV, Lerma J, and Stern-Bach Y (2005). Molecular mechanism of AMPA receptor noncompetitive antagonism. Neuron. 48 (2): 279—88. doi:10.1016/j.neuron.2005.09.024.
  • Bleakman D; Ballyk BA, Schoepp DD, Palmer AJ, Bath CP, Sharpe EF, Woolley ML, Bufton HR, Kamboj RK, Tarnawa I, and Lodge D (1996). Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology. 35 (12): 1689—1702. doi:10.1016/S0028-3908(96)00156-6.
  • Cotton JL; and Partin KM (2000). The contributions of GluR2 to allosteric modulation of AMPA receptors. Neuropharmacology. 39 (1): 21—31. doi:10.1016/S0028-3908(99)00105-7.
  • Andersen PH; Tygesen CK, Rasmussen JS, Søegaard-Nielsen L, Hansen A, Hansen K, Kiemer A, and Stidsen CE (2006). Stable expression of homomeric AMPAselective glutamate receptors in BHK cells. Eur J Pharmacol. 311 (1): 95—100. doi:10.1016/0014-2999(96)00399-8.
  • Kiskin NI; Kryshtal’ OA, Tsyndrenko AIa, Volkova TM, and Grishin EV (1989). Argiopine, argiopinines and pseudoargiopinines—blockers of the glutamate receptors in hippocampal neurons. Neirofiziologiia. 21 (6): 525—32. doi:10.1007/BF01051949.
  • Herlitze S; Raditsch M, Ruppersberg JP, Jahn W, Monyer H, Schoepfer R, and Witzemann V (1993). Argiotoxin detects molecular differences in AMPA receptor channels. Neuron. 10 (6): 1131—40. doi:10.1016/0896-6273(93)90061-U.
  • Kromann H; Krikstolaityte S, Andersen AJ, Andersen K, Krogsgaard-Larsen P, Jaroszewski JW, Egebjerg J, and Strømgaard K (2002). Solid-Phase Synthesis of Polyamine Toxin Analogues:  Potent and Selective Antagonists of Ca2+-Permeable AMPA Receptors. J Med Chem. 45 (26): 5745—54. doi:10.1021/jm020314s.
  • Schlesinger F; Tammena D, Krampfl K, and Bufler J (2005). Two mechanisms of action of the adamantane derivative IEM-1460 at human AMPA-type glutamate receptors. Br J Pharmacol. 145 (5): 656—63. doi:10.1038/sj.bjp.0706233.
  • Ahmed HA; and Oswald RE (2010). Piracetam Defines a New Binding Site for Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic Acid (AMPA) Receptors. J Med Chem. 53 (5): 2197—203. doi:10.1021/jm901905j.
  • Partin KM; Bowie D, and Mayer ML (1995). Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron. 14 (4): 833—43. doi:10.1016/0896-6273(95)90227-9.
  • Quirk JC; Siuda ER, and Nisenbaum ES (2004). Molecular determinants responsible for differences in desensitization kinetics of AMPA receptor splice variants. J Neurosci. 24 (50): 11416—20. doi:10.1523/JNEUROSCI.2464-04.2004.
  • Banke TG; Schousboe A, and Pickering DS (2001). Comparison of the agonist binding site of homomeric, heteromeric, and chimeric GluR1(o) and GluR3(o) AMPA receptors. J Neurosci Res. 49 (2): 176—85. doi:10.1002/(SICI)1097-4547(19970715)49:2<176::AID-JNR6>3.0.CO;2-6.
  • Grosskreutz J; Zoerner A, Schlesinger F, Krampfl K, Dengler R, and Bufler J (2003). Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells. Eur J Neurosci. 17 (6): 1173—78. doi:10.1046/j.1460-9568.2003.02531.x.
  • Lomeli H; Mosbacher J, Melcher T, Ho¨ger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, and Seeburg PH (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 266 (5191): 1709—13. doi:10.1126/science.7992055.
  • Mauceri D; Cattabeni F, Di Luca M, and Gardoni, F (2004). Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines. J Biol Chem. 279 (22): 23813—21. doi:10.1074/jbc.M402796200.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Wu H; Nash JE, Zamorano P, and Garner CC (2002). Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem. 277: 30928—34. doi:10.1074/jbc.M203735200.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  • Zhu JJ; Qin Y, Zhao M, Van Aelst L, and Malinow R (2002). Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 110 (4): 443—55. doi:10.1016/S0092-8674(02)00897-8.
  • Borgdorff AJ; and Choquet D (2002). Regulation of AMPA receptor lateral movements. Nature. 417 (6889): 649—53. doi:10.1038/nature00780.
  • Park M; Penick EC, Edwards JG, Kauer JA and Ehlers MD (2004). Recycling endosomes supply AMPA receptors for LTP. Science. 305 (5692): 1972—5. doi:10.1126/science.1102026.
  • Makino H; and Malinow R (2009). AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron. 64 (3): 381—90. doi:10.1016/j.neuron.2009.08.035.
  • Howard MA; Elias GM, Elias LA, Swat W, and Nicoll RA (2010). The role of SAP97 in synaptic glutamate receptor dynamics. Proc Natl Acad Sci U S A. 107 (8): 3805—10. doi:10.1073/pnas.0914422107.
  • Wang Z; Edwards JG, Riley N, Provance DW Jr, Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA and Ehlers MD (2008). Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell. 135 (3): 535—48. doi:10.1016/j.cell.2008.09.057.
  • Beattie EC; Carroll RC, Yu X, Morishita W, Yasuda H, Zastrow M and Malenka RC (2000). Regulation of AMPA receptor endocytosis by a mechanism shared with LTD. Nat Neurosci. 3 (12): 1291—1300. doi:10.1038/81823.
  • Jung N; and Haucke V (2007). Clathrin-mediated endocytosis at synapses. Traffic. 8 (9): 1129—36. doi:10.1111/j.1600-0854.2007.00595.x.
  • Lu W; and Ziff E (2005). PICK1 interacts with ABP/GRIP to regulate AMPA Receptor Trafficking. Neuron. 47 (3): 407—21. doi:10.1016/j.neuron.2005.07.006.

jneurosci.org

jns-journal.com

lww.com

journals.lww.com

nih.gov

pubmed.ncbi.nlm.nih.gov

physoc.org

jp.physoc.org

pnas.org

sciencedirect.com

web.archive.org

wiley.com

onlinelibrary.wiley.com

  • Vogensen SB; Jensen HS, Stensbøl TB, Frydenvang K, Bang-Andersen B, Johansen TN, Egebjerg J, and Krogsgaard-Larsen P (2000). Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist. Chirality. 12 (10): 705—13. doi:10.1002/1520-636X(2000)12:10<705::AID-CHIR2>3.0.CO;2-9. {{cite journal}}: Зовнішнє посилання в |journal= (довідка)

worldcat.org

search.worldcat.org