Композитні методи квантової хімії (Ukrainian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Композитні методи квантової хімії" in Ukrainian language version.

refsWebsite
Global rank Ukrainian rank
2nd place
4th place
18th place
74th place
4th place
5th place
69th place
188th place
1st place
1st place
5th place
9th place
7,226th place
3,494th place
1,336th place
6,315th place

arxiv.org

doi.org

  • A. Karton (2016). A computational chemist's guide to accurate thermochemistry for organic molecules (PDF). Wiley Interdisciplinary Reviews: Computational Molecular Science. 6 (3): 292—310. doi:10.1002/wcms.1249. Архів оригіналу (PDF) за 26 Червня 2021. Процитовано 26 Червня 2021.
  • Ohlinger, William S.; Philip E. Klunzinger; Bernard J. Deppmeier; Warren J. Hehre (January 2009). Efficient Calculation of Heats of Formation. The Journal of Physical Chemistry A. ACS Publications. 113 (10): 2165—2175. Bibcode:2009JPCA..113.2165O. doi:10.1021/jp810144q. PMID 19222177.
  • Fabian, Walter M. F. (2008). Accurate thermochemistry from quantum chemical calculations?. Monatshefte für Chemie. 139 (4): 309—318. doi:10.1007/s00706-007-0798-8.
  • Pople, John A.; Head-Gordon M.; Fox D.J.; Raghavachari K.; Raghavachari K. (May 1989). Gaussian-1 theory: A general procedure for prediction of molecular energies. The Journal of Chemical Physics. AIP. 90 (10): 5622—5629. doi:10.1063/1.456415.
  • Curtiss, Larry A.; Krishnan Raghavachari; Gary W. Trucks; John A. Pople (June 1991). Gaussian-2 theory for molecular energies of first- and second-row compounds. The Journal of Chemical Physics. AIP. 94 (11): 7221—7230. doi:10.1063/1.460205.
  • Curtiss, Larry A.; Krishnan Raghavachari; Paul C. Redfern; Vitaly Rassolov; John A. Pople (November 1998). Gaussian-3 (G3) theory for molecules containing first and second-row atoms. The Journal of Chemical Physics. AIP. 109 (18): 7764—7776. doi:10.1063/1.477422.
  • Mayhall, Nicholas J.; Raghavachari, Krishnan; Redfern, Paul C.; Curtiss, Larry A. (30 квітня 2009). Investigation of Gaussian4 Theory for Transition Metal Thermochemistry. The Journal of Physical Chemistry A (англ.). 113 (17): 5170—5175. doi:10.1021/jp809179q. ISSN 1089-5639. PMID 19341257.
  • Chan, Bun; Karton, Amir; Raghavachari, Krishnan (13 серпня 2019). G4(MP2)-XK: A Variant of the G4(MP2)-6X Composite Method with Expanded Applicability for Main-Group Elements up to Radon. Journal of Chemical Theory and Computation (англ.). 15 (8): 4478—4484. doi:10.1021/acs.jctc.9b00449. ISSN 1549-9618. PMID 31287695.
  • Deyonker, Nathan J.; Cundari, Thomas R.; Wilson, Angela K. (2006). The correlation consistent composite approach (ccCA): An alternative to the Gaussian-n methods. J. Chem. Phys. 124 (11): 114104. Bibcode:2006JChPh.124k4104D. doi:10.1063/1.2173988. PMID 16555871. Архів оригіналу за 25 Червня 2021. Процитовано 26 Червня 2021.
  • Nyden, Mark R.; Petersson, G.A. (1981). Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 75 (4): 1843—1862. doi:10.1063/1.442208.
  • Ochterski, Joseph W.; Petersson, G.A.; Montgomery, J.A. (1996). A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 104 (7): 2598—2619. doi:10.1063/1.470985.
  • Petersson, G. (2002). Complete Basis Set Models for Chemical Reactivity: from the Helium Atom to Enzyme Kinetics. У Cioslowski, J. (ред.). Quantum-Mechanical Prediction of Thermochemical Data. Understanding Chemical Reactivity. Т. 22. Springer Netherlands. с. 99—130. doi:10.1007/0-306-47632-0_4. ISBN 0-7923-7077-5.
  • David A Dixon, David Feller and Kirk A Peterson (2012). A Practical Guide to Reliable First Principles Computational Thermochemistry Predictions Across the Periodic Table. Annual Reports in Computational Chemistry Volume 8. Annual Reports in Computational Chemistry. Т. 8. с. 1—28. doi:10.1016/B978-0-444-59440-2.00001-6. ISBN 9780444594402.
  • David Feller, Kirk A Peterson and David A Dixon (2012). Further benchmarks of a composite, convergent, statistically calibrated coupled-cluster-based approach for thermochemical and spectroscopic studies. Molecular Physics. 110 (19–20): 2381—2399. Bibcode:2012MolPh.110.2381F. doi:10.1080/00268976.2012.684897.
  • David Feller, Kirk A Peterson and Branko Ruscic (2014). Improved accuracy benchmarks of small molecules using correlation consistent basis sets. Theoretical Chemistry Accounts. 133: 1407—16. doi:10.1007/s00214-013-1407-z.
  • J. M. L. Martin; G. de Oliveira (1999). Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. Journal of Chemical Physics. 111 (5): 1843—1856. arXiv:physics/9904038. Bibcode:1999JChPh.111.1843M. doi:10.1063/1.479454.
  • A. D. Boese; M. Oren; O. Atasoylu; J. M. L. Martin; M. Kállay; J. Gauss (2004). W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range. Journal of Chemical Physics. 120 (9): 4129—4141. arXiv:physics/0311067. Bibcode:2004JChPh.120.4129B. doi:10.1063/1.1638736. PMID 15268579.
  • A. Karton; E. Rabinovich; J. M. L. Martin; B. Ruscic (2006). W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. Journal of Chemical Physics. 125 (14): 144108. arXiv:physics/0608123. Bibcode:2006JChPh.125n4108K. doi:10.1063/1.2348881. PMID 17042580.
  • A. Karton; J. M. L. Martin (2010). Performance of W4 theory for spectroscopic constants and electrical properties of small molecules. Journal of Chemical Physics. 133 (14): 144102. arXiv:1008.4163. Bibcode:2010JChPh.133n4102K. doi:10.1063/1.3489113. PMID 20949982.
  • A. Karton; J. M. L. Martin (2012). Explicitly correlated Wn theory: W1–F12 and W2–F12. Journal of Chemical Physics. 136 (12): 124114. Bibcode:2012JChPh.136l4114K. doi:10.1063/1.3697678. PMID 22462842.

harvard.edu

ui.adsabs.harvard.edu

nih.gov

pubmed.ncbi.nlm.nih.gov

unt.edu

digital.library.unt.edu

uwa.edu.au

api.research-repository.uwa.edu.au

  • A. Karton (2016). A computational chemist's guide to accurate thermochemistry for organic molecules (PDF). Wiley Interdisciplinary Reviews: Computational Molecular Science. 6 (3): 292—310. doi:10.1002/wcms.1249. Архів оригіналу (PDF) за 26 Червня 2021. Процитовано 26 Червня 2021.

research-repository.uwa.edu.au

web.archive.org

  • A. Karton (2016). A computational chemist's guide to accurate thermochemistry for organic molecules (PDF). Wiley Interdisciplinary Reviews: Computational Molecular Science. 6 (3): 292—310. doi:10.1002/wcms.1249. Архів оригіналу (PDF) за 26 Червня 2021. Процитовано 26 Червня 2021.
  • Deyonker, Nathan J.; Cundari, Thomas R.; Wilson, Angela K. (2006). The correlation consistent composite approach (ccCA): An alternative to the Gaussian-n methods. J. Chem. Phys. 124 (11): 114104. Bibcode:2006JChPh.124k4104D. doi:10.1063/1.2173988. PMID 16555871. Архів оригіналу за 25 Червня 2021. Процитовано 26 Червня 2021.

worldcat.org

search.worldcat.org

  • Mayhall, Nicholas J.; Raghavachari, Krishnan; Redfern, Paul C.; Curtiss, Larry A. (30 квітня 2009). Investigation of Gaussian4 Theory for Transition Metal Thermochemistry. The Journal of Physical Chemistry A (англ.). 113 (17): 5170—5175. doi:10.1021/jp809179q. ISSN 1089-5639. PMID 19341257.
  • Chan, Bun; Karton, Amir; Raghavachari, Krishnan (13 серпня 2019). G4(MP2)-XK: A Variant of the G4(MP2)-6X Composite Method with Expanded Applicability for Main-Group Elements up to Radon. Journal of Chemical Theory and Computation (англ.). 15 (8): 4478—4484. doi:10.1021/acs.jctc.9b00449. ISSN 1549-9618. PMID 31287695.