Нюховий горбок (Ukrainian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Нюховий горбок" in Ukrainian language version.

refsWebsite
Global rank Ukrainian rank
4th place
5th place
2nd place
4th place
6th place
6th place
5th place
9th place
5,293rd place
2,625th place

archive.org

doi.org

  • Hitt, J. C.; Bryon, D. M.; Modianos, D. T. (1973). Effects of rostral medial forebrain bundle and olfactory tubercle lesions upon sexual behavior of male rats. J. Comp. Physiol. Psychol. 82 (1): 30—36. doi:10.1037/h0033797. PMID 4567890.
  • Koob, G. F.; Riley, S. J.; Smith, S. C.; Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J. Comp. Physiol. Psychol. 92 (5): 917—927. doi:10.1037/h0077542. PMID 282297.
  • Wesson, D. W.; Wilson, D. A. (2011). Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more?. Neurosci. Biobehav. Rev. 35 (3): 655—668. doi:10.1016/j.neubiorev.2010.08.004. PMC 3005978. PMID 20800615.
  • Ikemoto S (2010). Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev. 35 (2): 129—50. doi:10.1016/j.neubiorev.2010.02.001. PMC 2894302. PMID 20149820. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures–the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. ... In the 1970s it was recognized that the olfactory tubercle contains a striatal component, which is filled with GABAergic medium spiny neurons receiving glutamatergic inputs form cortical regions and dopaminergic inputs from the VTA and projecting to the ventral pallidum just like the nucleus accumbens
  • Rupp, C. I.; Fleischhacker, W. W.; Kemmler, G.; Kremser, C.; Bilder, R. M.; Mechtcheriakov, S.; Szeszko, P. R. (2005). Olfactory functions and volumetric measures of orbitofrontal and limbic regions in schizophrenia. Schizophrenia Research. 74 (2–3): 149—161. doi:10.1016/j.schres.2004.07.010. PMID 15721995.
  • Murphy, C.; Nordin, S.; Jinich, S. (1999). Very early decline in recognition memory for odors in Alzheimer’s disease. Aging Neuropsychol. Cogn. 6 (3): 229—240. doi:10.1076/anec.6.3.229.777.
  • Negoias, S.; Croy, I.; Gerber, J.; Puschmann, S.; Petrowski, K.; Joraschky, P.; Hummel, T. (2010). Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience. 169 (1): 415—421. doi:10.1016/j.neuroscience.2010.05.012. PMID 20472036.
  • Zelano, C.; Montag, J.; Johnson, B.; Khan, R.; Sobel, N. (2007). Dissociated representations of irritation and valence in human primary olfactory cortex. Journal of Neurophysiology. 97 (3): 1969—1976. doi:10.1152/jn.01122.2006. PMID 17215504.{{cite journal}}: Обслуговування CS1: Сторінки з параметром url-status, але без параметра archive-url (посилання)
  • Millhouse, O. E.; Heimer, L. (1984). Cell configurations in the olfactory tubercle of the rat. J. Comp. Neurol. 228 (4): 571—597. doi:10.1002/cne.902280409. PMID 6490970.
  • Meyer, G.; Gonzalez-Hernandez, T.; Carrillo-Padilla, F.; Ferres-Torres, R. (1989). Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. Journal of Comparative Neurology. 284 (3): 405—428. doi:10.1002/cne.902840308. PMID 2474005.
  • Millhouse, O. E. (1987). Granule cells of the olfactory tubercle and the question of the islands of calleja. The Journal of Comparative Neurology. 265 (1): 1—24. doi:10.1002/cne.902650102. PMID 3693600.
  • Fallon, JH. (Jun 1983). The islands of Calleja complex of rat basal forebrain II: connections of medium and large sized cells. Brain Res Bull. 10 (6): 775—93. doi:10.1016/0361-9230(83)90210-1. PMID 6616269.
  • Ribak, CE.; Fallon, JH. (Mar 1982). The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J Comp Neurol. 205 (3): 207—18. doi:10.1002/cne.902050302. PMID 7076893.
  • García-Moreno, F.; López-Mascaraque, L.; de Carlos, JA. (Jun 2008). Early telencephalic migration topographically converging in the olfactory cortex. Cereb Cortex. 18 (6): 1239—52. doi:10.1093/cercor/bhm154. PMID 17878174.
  • Bayer, SA. (1985). Neuron production in the hippocampus and olfactory bulb of the adult rat brain: addition or replacement?. Ann N Y Acad Sci. 457: 163—72. doi:10.1111/j.1749-6632.1985.tb20804.x. PMID 3868311.
  • Bedard, A.; Levesque, M.; Bernier, P. J.; Parent, A. (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein bcl-2. European Journal of Neuroscience. 16 (10): 1917—1924. doi:10.1046/j.1460-9568.2002.02263.x. PMID 12453055.
  • De Marchis, S.; Fasolo, A.; Puche, AC. (Aug 2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol. 476 (3): 290—300. doi:10.1002/cne.20217. PMID 15269971.
  • Schwob, JE.; Price, JL. (Feb 1984). The development of axonal connections in the central olfactory system of rats. J Comp Neurol. 223 (2): 177—202. doi:10.1002/cne.902230204. PMID 6200518.
  • Wesson, D. W.; Wilson, D. A. (2010). Smelling sounds: olfactory-auditory sensory convergence in the olfactory tubercle. J. Neurosci. 30 (8): 3013—3021. doi:10.1523/JNEUROSCI.6003-09.2010. PMC 2846283. PMID 20181598.
  • Mick, G.; Cooper, H.; Magnin, M. (1993). Retinal projection to the olfactory tubercle and basal telencephalon in primates. J. Comp. Neurol. 327 (2): 205—219. doi:10.1002/cne.903270204. PMID 8425942.
  • Asher, I. M.; Aghajanian, G. K. (1974). 6-hydroxydopamine lesions of olfactory tubercles and caudate nuclei: Effect on amphetamine-induced stereo-typed behavior in rats. Brain Research. 82 (1): 1—12. doi:10.1016/0006-8993(74)90888-9. PMID 4373138.
  • McKenzie, GM. (1972). Role of the tuberculum olfactorium in streotyped behaviour induced by apomorphine in the rat. Psychopharmacologia. 23 (3): 212—9. doi:10.1007/bf00404127. PMID 5026945.
  • Bacon, A. W.; Bondi, M. W.; Salmon, D. P.; Murphy, C. (1998). Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Annals of the New York Academy of Sciences. 855: 723—731. doi:10.1111/j.1749-6632.1998.tb10651.x. PMID 9929677.
  • Nordin, S.; Murphy, C. (1996). Impaired sensory and cognitive olfactory function in questionable Alzheimer’s disease. Neuropsych. 10 (1): 112—119. doi:10.1037/0894-4105.10.1.113.
  • Doty, R. L.; Perl, D. P.; Steele, J. C.; Chen, K. M.; Pierce, J. D., Jr.; Reyes, P.; Kurland, L. T. (1991). Odor identification deficit of the parkinsonism-dementia complex of Guam: equivalence to that of Alzheimer’s and idiopathic Parkinson’s disease. Neurology. 41 (5 Suppl 2): 77—80, discussion 80–81. doi:10.1212/WNL.41.5_Suppl_2.77. PMID 2041598.
  • Gervais, G. (1979). Unilateral lesions of the olfactory tubercle modifying general arousal effects in the rat olfactory bulb. Electroencephalogr. Clin. Neurophysiol. 46 (6): 665—674. doi:10.1016/0013-4694(79)90104-4. PMID 87311.
  • Détári, L.; Juhász, G.; Kukorelli, T. (1984). Firing properties of cat basal forebrain neurones during sleep-wakefulness cycle. Electroencephalography and Clinical Neurophysiology. 58 (4): 362—368. doi:10.1016/0013-4694(84)90062-2. ISSN 0013-4694.
  • Suaud-Chagny, M.F.; Ponec, J.; Gonon, F. (1991). Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle byin vivo electrochemistry. Neuroscience. 45 (3): 641—652. doi:10.1016/0306-4522(91)90277-U. ISSN 0306-4522.

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Hitt, J. C.; Bryon, D. M.; Modianos, D. T. (1973). Effects of rostral medial forebrain bundle and olfactory tubercle lesions upon sexual behavior of male rats. J. Comp. Physiol. Psychol. 82 (1): 30—36. doi:10.1037/h0033797. PMID 4567890.
  • Koob, G. F.; Riley, S. J.; Smith, S. C.; Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J. Comp. Physiol. Psychol. 92 (5): 917—927. doi:10.1037/h0077542. PMID 282297.
  • Wesson, D. W.; Wilson, D. A. (2011). Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more?. Neurosci. Biobehav. Rev. 35 (3): 655—668. doi:10.1016/j.neubiorev.2010.08.004. PMC 3005978. PMID 20800615.
  • Ikemoto S (2010). Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev. 35 (2): 129—50. doi:10.1016/j.neubiorev.2010.02.001. PMC 2894302. PMID 20149820. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures–the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. ... In the 1970s it was recognized that the olfactory tubercle contains a striatal component, which is filled with GABAergic medium spiny neurons receiving glutamatergic inputs form cortical regions and dopaminergic inputs from the VTA and projecting to the ventral pallidum just like the nucleus accumbens
  • Rupp, C. I.; Fleischhacker, W. W.; Kemmler, G.; Kremser, C.; Bilder, R. M.; Mechtcheriakov, S.; Szeszko, P. R. (2005). Olfactory functions and volumetric measures of orbitofrontal and limbic regions in schizophrenia. Schizophrenia Research. 74 (2–3): 149—161. doi:10.1016/j.schres.2004.07.010. PMID 15721995.
  • Negoias, S.; Croy, I.; Gerber, J.; Puschmann, S.; Petrowski, K.; Joraschky, P.; Hummel, T. (2010). Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience. 169 (1): 415—421. doi:10.1016/j.neuroscience.2010.05.012. PMID 20472036.
  • Ikemoto, S. (2003). Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. Journal of Neuroscience. 23 (28): 9305—9311. PMID 14561857.
  • Zelano, C.; Montag, J.; Johnson, B.; Khan, R.; Sobel, N. (2007). Dissociated representations of irritation and valence in human primary olfactory cortex. Journal of Neurophysiology. 97 (3): 1969—1976. doi:10.1152/jn.01122.2006. PMID 17215504.{{cite journal}}: Обслуговування CS1: Сторінки з параметром url-status, але без параметра archive-url (посилання)
  • Millhouse, O. E.; Heimer, L. (1984). Cell configurations in the olfactory tubercle of the rat. J. Comp. Neurol. 228 (4): 571—597. doi:10.1002/cne.902280409. PMID 6490970.
  • Meyer, G.; Gonzalez-Hernandez, T.; Carrillo-Padilla, F.; Ferres-Torres, R. (1989). Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. Journal of Comparative Neurology. 284 (3): 405—428. doi:10.1002/cne.902840308. PMID 2474005.
  • Millhouse, O. E. (1987). Granule cells of the olfactory tubercle and the question of the islands of calleja. The Journal of Comparative Neurology. 265 (1): 1—24. doi:10.1002/cne.902650102. PMID 3693600.
  • Fallon, JH. (Jun 1983). The islands of Calleja complex of rat basal forebrain II: connections of medium and large sized cells. Brain Res Bull. 10 (6): 775—93. doi:10.1016/0361-9230(83)90210-1. PMID 6616269.
  • Ribak, CE.; Fallon, JH. (Mar 1982). The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J Comp Neurol. 205 (3): 207—18. doi:10.1002/cne.902050302. PMID 7076893.
  • García-Moreno, F.; López-Mascaraque, L.; de Carlos, JA. (Jun 2008). Early telencephalic migration topographically converging in the olfactory cortex. Cereb Cortex. 18 (6): 1239—52. doi:10.1093/cercor/bhm154. PMID 17878174.
  • Bayer, SA. (1985). Neuron production in the hippocampus and olfactory bulb of the adult rat brain: addition or replacement?. Ann N Y Acad Sci. 457: 163—72. doi:10.1111/j.1749-6632.1985.tb20804.x. PMID 3868311.
  • Bedard, A.; Levesque, M.; Bernier, P. J.; Parent, A. (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein bcl-2. European Journal of Neuroscience. 16 (10): 1917—1924. doi:10.1046/j.1460-9568.2002.02263.x. PMID 12453055.
  • De Marchis, S.; Fasolo, A.; Puche, AC. (Aug 2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol. 476 (3): 290—300. doi:10.1002/cne.20217. PMID 15269971.
  • Schwob, JE.; Price, JL. (Feb 1984). The development of axonal connections in the central olfactory system of rats. J Comp Neurol. 223 (2): 177—202. doi:10.1002/cne.902230204. PMID 6200518.
  • Deadwyler, S. A.; Foster, T. C.; Hampson, R. E. (1987). Processing of sensory information in the hippocampus. CRC Crit. Rev. Clin. Neurobiol. 2 (4): 335—355. PMID 3297494.
  • Wesson, D. W.; Wilson, D. A. (2010). Smelling sounds: olfactory-auditory sensory convergence in the olfactory tubercle. J. Neurosci. 30 (8): 3013—3021. doi:10.1523/JNEUROSCI.6003-09.2010. PMC 2846283. PMID 20181598.
  • Mick, G.; Cooper, H.; Magnin, M. (1993). Retinal projection to the olfactory tubercle and basal telencephalon in primates. J. Comp. Neurol. 327 (2): 205—219. doi:10.1002/cne.903270204. PMID 8425942.
  • Asher, I. M.; Aghajanian, G. K. (1974). 6-hydroxydopamine lesions of olfactory tubercles and caudate nuclei: Effect on amphetamine-induced stereo-typed behavior in rats. Brain Research. 82 (1): 1—12. doi:10.1016/0006-8993(74)90888-9. PMID 4373138.
  • McKenzie, GM. (1972). Role of the tuberculum olfactorium in streotyped behaviour induced by apomorphine in the rat. Psychopharmacologia. 23 (3): 212—9. doi:10.1007/bf00404127. PMID 5026945.
  • Ikemoto, S.; Wise, R. A. (2002). Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci. 22 (22): 9895—9904. PMID 12427846.
  • Bacon, A. W.; Bondi, M. W.; Salmon, D. P.; Murphy, C. (1998). Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Annals of the New York Academy of Sciences. 855: 723—731. doi:10.1111/j.1749-6632.1998.tb10651.x. PMID 9929677.
  • Doty, R. L.; Perl, D. P.; Steele, J. C.; Chen, K. M.; Pierce, J. D., Jr.; Reyes, P.; Kurland, L. T. (1991). Odor identification deficit of the parkinsonism-dementia complex of Guam: equivalence to that of Alzheimer’s and idiopathic Parkinson’s disease. Neurology. 41 (5 Suppl 2): 77—80, discussion 80–81. doi:10.1212/WNL.41.5_Suppl_2.77. PMID 2041598.
  • Gervais, G. (1979). Unilateral lesions of the olfactory tubercle modifying general arousal effects in the rat olfactory bulb. Electroencephalogr. Clin. Neurophysiol. 46 (6): 665—674. doi:10.1016/0013-4694(79)90104-4. PMID 87311.

ncbi.nlm.nih.gov

physiology.org

jn.physiology.org

worldcat.org

search.worldcat.org