Carlile, Brad; Delamarter, Guy; Kinney, Paul; Marti, Akiko; Whitney, Brian (9 листопада 2017). Improving Deep Learning by Inverse Square Root Linear Units (ISRLUs). arXiv:1710.09967 [cs.LG].
He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (6 лютого 2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. arXiv:1502.01852 [cs.CV].
Xu, Bing; Wang, Naiyan; Chen, Tianqi; Li, Mu (4 травня 2015). Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv:1505.00853 [cs.LG].
Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (23 листопада 2015). Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv:1511.07289 [cs.LG].
Jin, Xiaojie; Xu, Chunyan; Feng, Jiashi; Wei, Yunchao; Xiong, Junjun; Yan, Shuicheng (22 грудня 2015). Deep Learning with S-shaped Rectified Linear Activation Units. arXiv:1512.07030 [cs.CV].
Forest Agostinelli; Matthew Hoffman; Peter Sadowski; Pierre Baldi (21 грудня 2014). Learning Activation Functions to Improve Deep Neural Networks. arXiv:1412.6830 [cs.NE].
Godfrey, Luke B.; Gashler, Michael S. (3 лютого 2016). A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks. 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management: KDIR. 1602: 481—486. arXiv:1602.01321. Bibcode:2016arXiv160201321G.
Gashler, Michael S.; Ashmore, Stephen C. (9 травня 2014). Training Deep Fourier Neural Networks To Fit Time-Series Data. arXiv:1405.2262 [cs.NE].
Stegemann, J. A.; N. R. Buenfeld (2014). A Glossary of Basic Neural Network Terminology for Regression Problems. Neural Computing & Applications. 8 (4): 290—296. doi:10.1007/s005210050034. ISSN0941-0643.
harvard.edu
ui.adsabs.harvard.edu
Godfrey, Luke B.; Gashler, Michael S. (3 лютого 2016). A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks. 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management: KDIR. 1602: 481—486. arXiv:1602.01321. Bibcode:2016arXiv160201321G.
Glorot, Xavier; Bordes, Antoine; Bengio, Yoshua (2011). Deep sparse rectifier neural networks(PDF). International Conference on Artificial Intelligence and Statistics.
Stegemann, J. A.; N. R. Buenfeld (2014). A Glossary of Basic Neural Network Terminology for Regression Problems. Neural Computing & Applications. 8 (4): 290—296. doi:10.1007/s005210050034. ISSN0941-0643.