Теорія функціонала густини (Ukrainian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Теорія функціонала густини" in Ukrainian language version.

refsWebsite
Global rank Ukrainian rank
2nd place
4th place
18th place
74th place
4th place
5th place
1st place
1st place
69th place
188th place
2,529th place
low place
5th place
9th place
2,204th place
4,508th place
2,569th place
959th place
low place
low place
274th place
202nd place
1,503rd place
1,382nd place
222nd place
164th place

aip.org

scitation.aip.org

aps.org

link.aps.org

arxiv.org

  • Assadi, M.H.N та ін. (2013). Theoretical study on copper's energetics and magnetism in TiO2 polymorphs. Journal of Applied Physics. 113 (23): 233913. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539.
  • K. Koshelev (2015). About density functional theory interpretation. arXiv:0812.2919 [quant-ph].
  • K. Koshelev (2007). Alpha variation problem and q-factor definition. arXiv:0707.1146 [physics.atom-ph].

doi.org

  • Assadi, M.H.N та ін. (2013). Theoretical study on copper's energetics and magnetism in TiO2 polymorphs. Journal of Applied Physics. 113 (23): 233913. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539.
  • Van Mourik, Tanja; Gdanitz, Robert J. (2002). A critical note on density functional theory studies on rare-gas dimers. Journal of Chemical Physics. 116 (22): 9620—9623. Bibcode:2002JChPh.116.9620V. doi:10.1063/1.1476010.
  • Vondrášek, Jiří; Bendová, Lada; Klusák, Vojtěch; Hobza, Pavel (2005). Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. Journal of the American Chemical Society. 127 (8): 2615—2619. doi:10.1021/ja044607h. PMID 15725017.
  • Grimme, Stefan (2006). Semiempirical hybrid density functional with perturbative second-order correlation. Journal of Chemical Physics. 124 (3): 034108. Bibcode:2006JChPh.124c4108G. doi:10.1063/1.2148954. PMID 16438568.
  • Zimmerli, Urs; Parrinello, Michele; Koumoutsakos, Petros (2004). Dispersion corrections to density functionals for water aromatic interactions. Journal of Chemical Physics. 120 (6): 2693—2699. Bibcode:2004JChPh.120.2693Z. doi:10.1063/1.1637034. PMID 15268413.
  • Grimme, Stefan (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry. 25 (12): 1463—1473. doi:10.1002/jcc.20078. PMID 15224390.
  • Von Lilienfeld, O. Anatole; Tavernelli, Ivano; Rothlisberger, Ursula; Sebastiani, Daniel (2004). Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Physical Review Letters. 93 (15): 153004. Bibcode:2004PhRvL..93o3004V. doi:10.1103/PhysRevLett.93.153004. PMID 15524874.
  • Tkatchenko, Alexandre; Scheffler, Matthias (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters. 102 (7): 073005. Bibcode:2009PhRvL.102g3005T. doi:10.1103/PhysRevLett.102.073005. PMID 19257665.
  • Hohenberg, Pierre; Walter Kohn (1964). Inhomogeneous electron gas. Physical Review. 136 (3B): B864—B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  • Levy, Mel (1979). Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proceedings of the National Academy of Sciences. United States National Academy of Sciences. 76 (12): 6062—6065. Bibcode:1979PNAS...76.6062L. doi:10.1073/pnas.76.12.6062.
  • Vignale, G.; Mark Rasolt (1987). Density-functional theory in strong magnetic fields. Physical Review Letters. American Physical Society. 59 (20): 2360—2363. Bibcode:1987PhRvL..59.2360V. doi:10.1103/PhysRevLett.59.2360. PMID 10035523.
  • Kohn, W.; Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review. 140 (4A): A1133—A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.140.A1133.
  • M. Brack (1983), Virial theorems for relativistic spin-½ and spin-0 particles, Phys. Rev. D, 27: 1950, doi:10.1103/physrevd.27.1950
  • Kieron Burke; Lucas O. Wagner (2013). DFT in a nutshell. International Journal of Quantum Chemistry. 113 (2): 96. doi:10.1002/qua.24259.
  • John P. Perdew; Adrienn Ruzsinszky; Jianmin Tao; Viktor N. Staroverov; Gustavo Scuseria; Gábor I. Csonka (2005). Prescriptions for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. Journal of Chemical Physics. 123 (6): 062201. Bibcode:2005JChPh.123f2201P. doi:10.1063/1.1904565. PMID 16122287.
  • Becke, Axel D. (14 травня 2014). Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics. 140 (18): 18A301. Bibcode:2014JChPh.140rA301B. doi:10.1063/1.4869598. ISSN 0021-9606. PMID 24832308. Архів оригіналу за 15 серпня 2016. Процитовано 11 квітня 2017.
  • Perdew, John P; Chevary, J A; Vosko, S H; Jackson, Koblar, A; Pederson, Mark R; Singh, D J; Fiolhais, Carlos (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B. 46 (11): 6671. Bibcode:1992PhRvB..46.6671P. doi:10.1103/physrevb.46.6671.
  • Becke, Axel D (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A. 38 (6): 3098. Bibcode:1988PhRvA..38.3098B. doi:10.1103/physreva.38.3098. PMID 9900728.
  • Langreth, David C; Mehl, M J (1983). Beyond the local-density approximation in calculations of ground-state electronic properties. Physical Review B. 28 (4): 1809. Bibcode:1983PhRvB..28.1809L. doi:10.1103/physrevb.28.1809.
  • Grayce, Christopher; Robert Harris (1994). Magnetic-field density-functional theory. Physical Review A. 50 (4): 3089—3095. Bibcode:1994PhRvA..50.3089G. doi:10.1103/PhysRevA.50.3089. PMID 9911249.
  • Viraht, Xiao-Yin (2012). Hohenberg-Kohn theorem including electron spin. Physical Review A. 86 (4): 042502. Bibcode:2012PhRvA..86d2502P. doi:10.1103/physreva.86.042502.
  • Segall, M.D.; Lindan, P.J (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter. 14 (11): 2717. Bibcode:2002JPCM...14.2717S. doi:10.1088/0953-8984/14/11/301.
  • Hanaor, Dorian A. H.; Assadi, Mohammed H. N.; Li, Sean; Yu, Aibing; Sorrell, Charles C. (2012). Ab initio study of phase stability in doped TiO2. Computational Mechanics. 50 (2): 185—194. doi:10.1007/s00466-012-0728-4.[недоступне посилання]
  • Somayeh. F. Rastegar, Hamed Soleymanabadi (1 січня 2014). Theoretical investigation on the selective detection of SO2 molecule by AlN nanosheets. Journal of Molecular Modeling. 20 (9). doi:10.1007/s00894-014-2439-6.[недоступне посилання з липня 2019]
  • Somayeh F. Rastegar, Hamed Soleymanabadi (1 січня 2013). DFT studies of acrolein molecule adsorption on pristine and Al- doped graphenes. Journal of Molecular Modeling. 19 (9): 3733—40. doi:10.1007/s00894-013-1898-5. PMID 23793719. Архів оригіналу за 16 січня 2017. Процитовано 12 квітня 2017.
  • Music, D.; Geyer, R.W.; Schneider, J.M. (2016). Recent progress and new directions in density functional theory based design of hard coatings. Surface & Coatings Technology. 286: 178. doi:10.1016/j.surfcoat.2015.12.021.
  • Topp, William C.; Hopfield, John J. (15 лютого 1973). Chemically Motivated Pseudopotential for Sodium. Physical Review B. 7 (4): 1295—1303. Bibcode:1973PhRvB...7.1295T. doi:10.1103/PhysRevB.7.1295.
  • Michelini, M. C.; Pis Diez, R.; Jubert, A. H. (25 червня 1998). A Density Functional Study of Small Nickel Clusters. International Journal of Quantum Chemistry. 70 (4–5): 694. doi:10.1002/(SICI)1097-461X(1998)70:4/5<693::AID-QUA15>3.0.CO;2-3. Архів оригіналу за 31 жовтня 2016. Процитовано 21 жовтня 2016.

harvard.edu

ui.adsabs.harvard.edu

  • Assadi, M.H.N та ін. (2013). Theoretical study on copper's energetics and magnetism in TiO2 polymorphs. Journal of Applied Physics. 113 (23): 233913. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539.
  • Van Mourik, Tanja; Gdanitz, Robert J. (2002). A critical note on density functional theory studies on rare-gas dimers. Journal of Chemical Physics. 116 (22): 9620—9623. Bibcode:2002JChPh.116.9620V. doi:10.1063/1.1476010.
  • Grimme, Stefan (2006). Semiempirical hybrid density functional with perturbative second-order correlation. Journal of Chemical Physics. 124 (3): 034108. Bibcode:2006JChPh.124c4108G. doi:10.1063/1.2148954. PMID 16438568.
  • Zimmerli, Urs; Parrinello, Michele; Koumoutsakos, Petros (2004). Dispersion corrections to density functionals for water aromatic interactions. Journal of Chemical Physics. 120 (6): 2693—2699. Bibcode:2004JChPh.120.2693Z. doi:10.1063/1.1637034. PMID 15268413.
  • Von Lilienfeld, O. Anatole; Tavernelli, Ivano; Rothlisberger, Ursula; Sebastiani, Daniel (2004). Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Physical Review Letters. 93 (15): 153004. Bibcode:2004PhRvL..93o3004V. doi:10.1103/PhysRevLett.93.153004. PMID 15524874.
  • Tkatchenko, Alexandre; Scheffler, Matthias (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters. 102 (7): 073005. Bibcode:2009PhRvL.102g3005T. doi:10.1103/PhysRevLett.102.073005. PMID 19257665.
  • Hohenberg, Pierre; Walter Kohn (1964). Inhomogeneous electron gas. Physical Review. 136 (3B): B864—B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  • Levy, Mel (1979). Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proceedings of the National Academy of Sciences. United States National Academy of Sciences. 76 (12): 6062—6065. Bibcode:1979PNAS...76.6062L. doi:10.1073/pnas.76.12.6062.
  • Vignale, G.; Mark Rasolt (1987). Density-functional theory in strong magnetic fields. Physical Review Letters. American Physical Society. 59 (20): 2360—2363. Bibcode:1987PhRvL..59.2360V. doi:10.1103/PhysRevLett.59.2360. PMID 10035523.
  • Kohn, W.; Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review. 140 (4A): A1133—A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.140.A1133.
  • John P. Perdew; Adrienn Ruzsinszky; Jianmin Tao; Viktor N. Staroverov; Gustavo Scuseria; Gábor I. Csonka (2005). Prescriptions for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. Journal of Chemical Physics. 123 (6): 062201. Bibcode:2005JChPh.123f2201P. doi:10.1063/1.1904565. PMID 16122287.
  • Becke, Axel D. (14 травня 2014). Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics. 140 (18): 18A301. Bibcode:2014JChPh.140rA301B. doi:10.1063/1.4869598. ISSN 0021-9606. PMID 24832308. Архів оригіналу за 15 серпня 2016. Процитовано 11 квітня 2017.
  • Perdew, John P; Chevary, J A; Vosko, S H; Jackson, Koblar, A; Pederson, Mark R; Singh, D J; Fiolhais, Carlos (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B. 46 (11): 6671. Bibcode:1992PhRvB..46.6671P. doi:10.1103/physrevb.46.6671.
  • Becke, Axel D (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A. 38 (6): 3098. Bibcode:1988PhRvA..38.3098B. doi:10.1103/physreva.38.3098. PMID 9900728.
  • Langreth, David C; Mehl, M J (1983). Beyond the local-density approximation in calculations of ground-state electronic properties. Physical Review B. 28 (4): 1809. Bibcode:1983PhRvB..28.1809L. doi:10.1103/physrevb.28.1809.
  • Grayce, Christopher; Robert Harris (1994). Magnetic-field density-functional theory. Physical Review A. 50 (4): 3089—3095. Bibcode:1994PhRvA..50.3089G. doi:10.1103/PhysRevA.50.3089. PMID 9911249.
  • Viraht, Xiao-Yin (2012). Hohenberg-Kohn theorem including electron spin. Physical Review A. 86 (4): 042502. Bibcode:2012PhRvA..86d2502P. doi:10.1103/physreva.86.042502.
  • Segall, M.D.; Lindan, P.J (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter. 14 (11): 2717. Bibcode:2002JPCM...14.2717S. doi:10.1088/0953-8984/14/11/301.
  • Topp, William C.; Hopfield, John J. (15 лютого 1973). Chemically Motivated Pseudopotential for Sodium. Physical Review B. 7 (4): 1295—1303. Bibcode:1973PhRvB...7.1295T. doi:10.1103/PhysRevB.7.1295.

nih.gov

pubmed.ncbi.nlm.nih.gov

springer.com

link.springer.com

springer.comФ

link.springer.comФ

springerlink.com

univie.ac.at

cms.mpi.univie.ac.at

web.archive.org

wiley.com

onlinelibrary.wiley.com

worldcat.org

search.worldcat.org