Virusga qarshi preparat (Uzbek Wikipedia)

Analysis of information sources in references of the Wikipedia article "Virusga qarshi preparat" in Uzbek language version.

refsWebsite
Global rank Uzbek rank
4th place
7th place
2nd place
3rd place
low place
3,102nd place
1st place
1st place
6th place
8th place

archive.org

doi.org

dx.doi.org

  • Rossignol JF (2014). "Nitazoxanide: a first-in-class broad-spectrum antiviral agent". Antiviral Res. 110: 94–103. doi:10.1016/j.antiviral.2014.07.014. PMID 25108173. PMC 7113776. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=7113776. "Originally developed and commercialized as an antiprotozoal agent, nitazoxanide was later identified as a first-in-class broad-spectrum antiviral drug and has been repurposed for the treatment of influenza. ... From a chemical perspective, nitazoxanide is the scaffold for a new class of drugs called thiazolides. These small-molecule drugs target host-regulated processes involved in viral replication. ... A new dosage formulation of nitazoxanide is presently undergoing global Phase 3 clinical development for the treatment of influenza. Nitazoxanide inhibits a broad range of influenza A and B viruses including influenza A(pH1N1) and the avian A(H7N9) as well as viruses that are resistant to neuraminidase inhibitors. ... Nitazoxanide also inhibits the replication of a broad range of other RNA and DNA viruses including respiratory syncytial virus, parainfluenza, , rotavirus, norovirus, hepatitis B, hepatitis C, dengue, yellow fever, Japanese encephalitis virus and human immunodeficiency virus in cell culture assays. Clinical trials have indicated a potential role for thiazolides in treating rotavirus and norovirus gastroenteritis and chronic hepatitis B and chronic hepatitis C. Ongoing and future clinical development is focused on viral respiratory infections, viral gastroenteritis and emerging infections such as dengue fever." 
  • Kisung Ko, Yoram Tekoah, Pauline M. Rudd, David J. Harvey, Raymond A. Dwek, Sergei Spitsin, Cathleen A. Hanlon, Charles Rupprecht, Bernhard Dietzschold, Maxim Golovkin, and Hilary Koprowski (2003). "Function and glycosylation of plant-derived antiviral monoclonal antibody". PNAS 100 (13): 8013–18. doi:10.1073/pnas.0832472100. PMID 12799460. PMC 164704. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164704. 

nih.gov

ncbi.nlm.nih.gov

  • Rossignol JF (2014). "Nitazoxanide: a first-in-class broad-spectrum antiviral agent". Antiviral Res. 110: 94–103. doi:10.1016/j.antiviral.2014.07.014. PMID 25108173. PMC 7113776. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=7113776. "Originally developed and commercialized as an antiprotozoal agent, nitazoxanide was later identified as a first-in-class broad-spectrum antiviral drug and has been repurposed for the treatment of influenza. ... From a chemical perspective, nitazoxanide is the scaffold for a new class of drugs called thiazolides. These small-molecule drugs target host-regulated processes involved in viral replication. ... A new dosage formulation of nitazoxanide is presently undergoing global Phase 3 clinical development for the treatment of influenza. Nitazoxanide inhibits a broad range of influenza A and B viruses including influenza A(pH1N1) and the avian A(H7N9) as well as viruses that are resistant to neuraminidase inhibitors. ... Nitazoxanide also inhibits the replication of a broad range of other RNA and DNA viruses including respiratory syncytial virus, parainfluenza, , rotavirus, norovirus, hepatitis B, hepatitis C, dengue, yellow fever, Japanese encephalitis virus and human immunodeficiency virus in cell culture assays. Clinical trials have indicated a potential role for thiazolides in treating rotavirus and norovirus gastroenteritis and chronic hepatitis B and chronic hepatitis C. Ongoing and future clinical development is focused on viral respiratory infections, viral gastroenteritis and emerging infections such as dengue fever." 
  • Kisung Ko, Yoram Tekoah, Pauline M. Rudd, David J. Harvey, Raymond A. Dwek, Sergei Spitsin, Cathleen A. Hanlon, Charles Rupprecht, Bernhard Dietzschold, Maxim Golovkin, and Hilary Koprowski (2003). "Function and glycosylation of plant-derived antiviral monoclonal antibody". PNAS 100 (13): 8013–18. doi:10.1073/pnas.0832472100. PMID 12799460. PMC 164704. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164704. 
  • Schnitzler, P; Schön, K; Reichling, J (2001). "Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture". Die Pharmazie 56 (4): 343–47. PMID 11338678. 

pubmedcentral.nih.gov

  • Rossignol JF (2014). "Nitazoxanide: a first-in-class broad-spectrum antiviral agent". Antiviral Res. 110: 94–103. doi:10.1016/j.antiviral.2014.07.014. PMID 25108173. PMC 7113776. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=7113776. "Originally developed and commercialized as an antiprotozoal agent, nitazoxanide was later identified as a first-in-class broad-spectrum antiviral drug and has been repurposed for the treatment of influenza. ... From a chemical perspective, nitazoxanide is the scaffold for a new class of drugs called thiazolides. These small-molecule drugs target host-regulated processes involved in viral replication. ... A new dosage formulation of nitazoxanide is presently undergoing global Phase 3 clinical development for the treatment of influenza. Nitazoxanide inhibits a broad range of influenza A and B viruses including influenza A(pH1N1) and the avian A(H7N9) as well as viruses that are resistant to neuraminidase inhibitors. ... Nitazoxanide also inhibits the replication of a broad range of other RNA and DNA viruses including respiratory syncytial virus, parainfluenza, , rotavirus, norovirus, hepatitis B, hepatitis C, dengue, yellow fever, Japanese encephalitis virus and human immunodeficiency virus in cell culture assays. Clinical trials have indicated a potential role for thiazolides in treating rotavirus and norovirus gastroenteritis and chronic hepatitis B and chronic hepatitis C. Ongoing and future clinical development is focused on viral respiratory infections, viral gastroenteritis and emerging infections such as dengue fever." 
  • Kisung Ko, Yoram Tekoah, Pauline M. Rudd, David J. Harvey, Raymond A. Dwek, Sergei Spitsin, Cathleen A. Hanlon, Charles Rupprecht, Bernhard Dietzschold, Maxim Golovkin, and Hilary Koprowski (2003). "Function and glycosylation of plant-derived antiviral monoclonal antibody". PNAS 100 (13): 8013–18. doi:10.1073/pnas.0832472100. PMID 12799460. PMC 164704. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164704. 

utmb.edu

gsbs.utmb.edu

web.archive.org