Cây bao trùm nhỏ nhất (Vietnamese Wikipedia)

Analysis of information sources in references of the Wikipedia article "Cây bao trùm nhỏ nhất" in Vietnamese language version.

refsWebsite
Global rank Vietnamese rank
451st place
287th place
2nd place
2nd place
1,185th place
930th place
1st place
1st place
6,505th place
low place
26th place
50th place

acm.org

portal.acm.org

ams.org

  • Fredman, M. L.; Willard, D. E. (1994), “Trans-dichotomous algorithms for minimum spanning trees and shortest paths”, Journal of Computer and System Sciences, 48 (3): 533–551, doi:10.1016/S0022-0000(05)80064-9, MR 1279413.
  • Karger, David R.; Klein, Philip N.; Tarjan, Robert E. (1995), “A randomized linear-time algorithm to find minimum spanning trees”, Journal of the Association for Computing Machinery, 42 (2): 321–328, doi:10.1145/201019.201022, MR 1409738
  • Chazelle, Bernard (2000), “A minimum spanning tree algorithm with inverse-Ackermann type complexity”, Journal of the Association for Computing Machinery, 47 (6): 1028–1047, doi:10.1145/355541.355562, MR 1866456.
  • Chazelle, Bernard (2000), “The soft heap: an approximate priority queue with optimal error rate”, Journal of the Association for Computing Machinery, 47 (6): 1012–1027, doi:10.1145/355541.355554, MR 1866455.
  • Pettie, Seth; Ramachandran, Vijaya (2002), “An optimal minimum spanning tree algorithm”, Journal of the Association for Computing Machinery, 49 (1): 16–34, doi:10.1145/505241.505243, MR 2148431.
  • Chong, Ka Wong; Han, Yijie; Lam, Tak Wah (2001), “Concurrent threads and optimal parallel minimum spanning trees algorithm”, Journal of the Association for Computing Machinery, 48 (2): 297–323, doi:10.1145/375827.375847, MR 1868718.
  • Pettie, Seth; Ramachandran, Vijaya (2002), “A randomized time-work optimal parallel algorithm for finding a minimum spanning forest”, SIAM Journal on Computing, 31 (6): 1879–1895, doi:10.1137/S0097539700371065, MR 1954882.
  • Steele, J. Michael (2002), “Minimal spanning trees for graphs with random edge lengths”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Basel: Birkhäuser, tr. 223–245, MR 1940139
  • Gabow, Harold N. (1977), “Two algorithms for generating weighted spanning trees in order”, SIAM Journal on Computing, 6 (1): 139–150, MR0441784.
  • Eppstein, David (1992), “Finding the k smallest spanning trees”, BIT, 32 (2): 237–248, doi:10.1007/BF01994879, MR 1172188.
  • Frederickson, Greg N. (1997), “Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees”, SIAM Journal on Computing, 26 (2): 484–538, doi:10.1137/S0097539792226825, MR1438526.
  • Spira, P. M.; Pan, A. (1975), “On finding and updating spanning trees and shortest paths”, SIAM Journal on Computing, 4 (3): 375–380, MR 0378466.
  • Holm, Jacob; de Lichtenberg, Kristian; Thorup, Mikkel (2001), “Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity”, Journal of the Association for Computing Machinery, 48 (4): 723–760, doi:10.1145/502090.502095, MR 2144928.

doi.org

jstor.org

  • Hu, T. C. (1961), “The maximum capacity route problem”, Operations Research, 9 (6): 898–900, JSTOR 167055.

kit.edu

algo2.iti.kit.edu

web.archive.org