Bazzanella, Danilo (2000), “Primes between consecutive squares”, Archiv der Mathematik, 75 (1): 29–34, doi:10.1007/s000130050469, MR1764888
Heath-Brown, D. R. (1988), “The number of primes in a short interval”, Journal für die Reine und Angewandte Mathematik, 389: 22–63, doi:10.1515/crll.1988.389.22, MR0953665
Selberg, Atle (1943), “On the normal density of primes in small intervals, and the difference between consecutive primes”, Archiv for Mathematik og Naturvidenskab, 47 (6): 87–105, MR0012624
Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014), “Empirical verification of the even Goldbach conjecture and computation of prime gaps up to ”, Mathematics of Computation, 83 (288): 2033–2060, doi:10.1090/S0025-5718-2013-02787-1, MR3194140.
Bazzanella, Danilo (2000), “Primes between consecutive squares”, Archiv der Mathematik, 75 (1): 29–34, doi:10.1007/s000130050469, MR1764888
Francis, Richard L. (tháng 2 năm 2004), “Between consecutive squares”, Missouri Journal of Mathematical Sciences, University of Central Missouri, Department of Mathematics and Computer Science, 16 (1): 51–57, doi:10.35834/2004/1601051; see p. 52, "It appears doubtful that this super-abundance of primes can be clustered in
such a way so as to avoid appearing at least once between consecutive squares."
Heath-Brown, D. R. (1988), “The number of primes in a short interval”, Journal für die Reine und Angewandte Mathematik, 389: 22–63, doi:10.1515/crll.1988.389.22, MR0953665
Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014), “Empirical verification of the even Goldbach conjecture and computation of prime gaps up to ”, Mathematics of Computation, 83 (288): 2033–2060, doi:10.1090/S0025-5718-2013-02787-1, MR3194140.