Giả thuyết Legendre (Vietnamese Wikipedia)

Analysis of information sources in references of the Wikipedia article "Giả thuyết Legendre" in Vietnamese language version.

refsWebsite
Global rank Vietnamese rank
2nd place
2nd place
451st place
287th place
3rd place
6th place
742nd place
1,694th place
1,747th place
1,247th place

ams.org

  • Bazzanella, Danilo (2000), “Primes between consecutive squares”, Archiv der Mathematik, 75 (1): 29–34, doi:10.1007/s000130050469, MR 1764888
  • Heath-Brown, D. R. (1988), “The number of primes in a short interval”, Journal für die Reine und Angewandte Mathematik, 389: 22–63, doi:10.1515/crll.1988.389.22, MR 0953665
  • Selberg, Atle (1943), “On the normal density of primes in small intervals, and the difference between consecutive primes”, Archiv for Mathematik og Naturvidenskab, 47 (6): 87–105, MR 0012624
  • Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014), “Empirical verification of the even Goldbach conjecture and computation of prime gaps up to ”, Mathematics of Computation, 83 (288): 2033–2060, doi:10.1090/S0025-5718-2013-02787-1, MR 3194140.

books.google.com

  • Stewart, Ian (2013), Visions of Infinity: The Great Mathematical Problems, Basic Books, tr. 164, ISBN 9780465022403.

doi.org

  • Bazzanella, Danilo (2000), “Primes between consecutive squares”, Archiv der Mathematik, 75 (1): 29–34, doi:10.1007/s000130050469, MR 1764888
  • Francis, Richard L. (tháng 2 năm 2004), “Between consecutive squares”, Missouri Journal of Mathematical Sciences, University of Central Missouri, Department of Mathematics and Computer Science, 16 (1): 51–57, doi:10.35834/2004/1601051; see p. 52, "It appears doubtful that this super-abundance of primes can be clustered in such a way so as to avoid appearing at least once between consecutive squares."
  • Heath-Brown, D. R. (1988), “The number of primes in a short interval”, Journal für die Reine und Angewandte Mathematik, 389: 22–63, doi:10.1515/crll.1988.389.22, MR 0953665
  • Baker, R. C.; Harman, G.; Pintz, J. (2001), “The difference between consecutive primes, II” (PDF), Proceedings of the London Mathematical Society, 83 (3): 532–562, doi:10.1112/plms/83.3.532
  • Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014), “Empirical verification of the even Goldbach conjecture and computation of prime gaps up to ”, Mathematics of Computation, 83 (288): 2033–2060, doi:10.1090/S0025-5718-2013-02787-1, MR 3194140.

oeis.org

umd.edu

cs.umd.edu