Ma trận (toán học) (Vietnamese Wikipedia)

Analysis of information sources in references of the Wikipedia article "Ma trận (toán học)" in Vietnamese language version.

refsWebsite
Global rank Vietnamese rank
451st place
287th place
3rd place
6th place
5th place
13th place
70th place
116th place
2nd place
2nd place
459th place
528th place
1st place
1st place
low place
low place
209th place
109th place
2,327th place
4,752nd place
low place
8,352nd place
low place
low place
low place
low place

ams.org

  • Knobloch 1994 Knobloch, Eberhard (1994), “From Gauss to Weierstrass: determinant theory and its historical evaluations”, The intersection of history and mathematics, Science Networks Historical Studies, 15, Basel, Boston, Berlin: Birkhäuser, tr. 51–66, MR 1308079
  • Hawkins 1975 Hawkins, Thomas (1975), “Cauchy and the spectral theory of matrices”, Historia Mathematica, 2: 1–29, doi:10.1016/0315-0860(75)90032-4, ISSN 0315-0860, MR 0469635
  • Householder 1975, Ch. 7 Householder, Alston S. (1975), The theory of matrices in numerical analysis, New York, NY: Dover Publications, MR 0378371
  • Xem phần "Ma trận" trong Itõ, ed. 1987 Itõ, Kiyosi biên tập (1987), Encyclopedic dictionary of mathematics. Vol. I-IV (ấn bản thứ 2), MIT Press, ISBN 978-0-262-09026-1, MR 0901762
  • "Không có nhiều lý thuyết ma trận chuyển sang không gian vô hạn chiều và những gì không hữu ích, nhưng đôi khi lại hữu ích." Halmos 1982, p. 23, Chapter 5 Halmos, Paul Richard (1982), A Hilbert space problem book, Graduate Texts in Mathematics, 19 (ấn bản thứ 2), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-90685-0, MR 0675952
  • Ward 1997, Ch. 2.8 Ward, J. P. (1997), Quaternions and Cayley numbers, Mathematics and its Applications, 403, Dordrecht, NL: Kluwer Academic Publishers Group, ISBN 978-0-7923-4513-8, MR 1458894
  • Krzanowski 1988, Ch. 2.2., p. 60 Krzanowski, Wojtek J. (1988), Principles of multivariate analysis, Oxford Statistical Science Series, 3, The Clarendon Press Oxford University Press, ISBN 978-0-19-852211-9, MR 0969370
  • Krzanowski 1988, Ch. 4.1 Krzanowski, Wojtek J. (1988), Principles of multivariate analysis, Oxford Statistical Science Series, 3, The Clarendon Press Oxford University Press, ISBN 978-0-19-852211-9, MR 0969370

books.google.com

  • Needham, Joseph; Wang Ling (1959). Science and Civilisation in China. III. Cambridge: Cambridge University Press. tr. 117. ISBN 9780521058018.
  • Mặc dù nhiều nguồn cho rằng J. J. Sylvester đưa ra thuật ngữ "matrix" vào năm 1848, nhưng Sylvester không công bố tài liệu nào vào năm 1848. (Về dẫn chứng cho Sylvester không công bố gì vào năm 1848, xem: J. J. Sylvester và H. F. Baker, ed., The Collected Mathematical Papers of James Joseph Sylvester (Cambridge, England: Cambridge University Press, 1904), vol. 1.) Năm đầu tiên mà ông sử dụng "matrix" xuất hiện vào năm 1850: J. J. Sylvester (1850) "Additions to the articles in the September number of this journal, "On a new class of theorems," and on Pascal's theorem," The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 37: 363-370. From page 369: "For this purpose we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants … "
  • The Collected Mathematical Papers of James Joseph Sylvester: 1837–1853, Paper 37, p. 247
  • Schneider, Hans; Barker, George Phillip (2012), Matrices and Linear Algebra, Dover Books on Mathematics, Courier Dover Corporation, tr. 251, ISBN 9780486139302.
  • Perlis, Sam (1991), Theory of Matrices, Dover books on advanced mathematics, Courier Dover Corporation, tr. 103, ISBN 9780486668109.
  • Anton, Howard (414), Elementary Linear Algebra (ấn bản thứ 10), John Wiley & Sons, ISBN 9780470458211.
  • Horn, Roger A.; Johnson, Charles R. (2012), Matrix Analysis (ấn bản thứ 2), Cambridge University Press, tr. 17, ISBN 9780521839402.

doi.org

kth.se

system.nada.kth.se

loc.gov

lccn.loc.gov

  • Nering (1970, tr. 37) Nering, Evar D. (1970), Linear Algebra and Matrix Theory (ấn bản thứ 2), New York: John Wiley & Sons, LCCN 76-91646
  • Bronson (1970, tr. 16) Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490

merriam-webster.com

omatrix.com

rose-hulman.edu

siam.org

epubs.siam.org

ted.com

ed.ted.com

umich.edu

name.umdl.umich.edu

web.archive.org

worldcat.org