Quaternion (Vietnamese Wikipedia)

Analysis of information sources in references of the Wikipedia article "Quaternion" in Vietnamese language version.

refsWebsite
Global rank Vietnamese rank
6th place
4th place
2nd place
2nd place
3rd place
6th place
11th place
76th place
1st place
1st place
4,660th place
1,765th place
5th place
13th place
332nd place
127th place
low place
low place
low place
low place
3,707th place
7,893rd place
1,564th place
2,655th place
704th place
985th place
1,923rd place
2,013th place
18th place
24th place
low place
low place
1,553rd place
859th place
6,413th place
8,195th place
low place
low place
4th place
7th place
5,099th place
4,092nd place
2,113th place
1,066th place
1,871st place
2,498th place
451st place
287th place
low place
low place
low place
low place
69th place
100th place
3,588th place
6,994th place
70th place
116th place

ams.org

archive.org

  • Một góc nhìn cá nhân hơn đến từ Joachim Lambek trong 1995. Ông viết trong bài văn If Hamilton had prevailed: quaternions in physics (dịch: Nếu Hamilton thắng thế: quaternion trong vật lý) rằng : "My own interest as a graduate student was raised by the inspiring book by Silberstein". Ông kết luận bằng phát biểu rằng "I firmly believe that quaternions can supply a shortcut for pure mathematicians who wish to familiarize themselves with certain aspects of theoretical physics." (dịch: Tôi tin rằng các quaternion có thể dùng làm đường tắt cho những nhà toán học thuần tuý muốn làm quen với một số nội dung của vật lý lý thuyết) Lambek, J. (1995). “If Hamilton had prevailed: Quaternions in physics”. Math. Intelligencer. 17 (4): 7–15. doi:10.1007/BF03024783.
  • Hamilton. Hodges and Smith. 1853. tr. 60. quaternion quotient lines tridimensional space time
  • Hamilton, Sir W.R. (1866). Hamilton, W.E. (biên tập). Elements of Quaternions. London: Longmans, Green, & Co.
  • Hamilton, Sir William Rowan (1866). “Article 285”. Elements of Quaternions. Longmans, Green, & Company. tr. 310.
  • Gibbs, J. Willard; Wilson, Edwin Bidwell (1901). Vector Analysis. Yale University Press. tr. 428. right tensor dyadic
  • Perlis, Sam (1971). “Capsule 77: Quaternions”. Historical Topics in Algebra. Historical Topics for the Mathematical Classroom. 31. Reston, VA: National Council of Teachers of Mathematics. tr. 39. ISBN 9780873530583. OCLC 195566.
  • Park, F.C.; Ravani, Bahram (1997). “Smooth invariant interpolation of rotations”. ACM Transactions on Graphics. 16 (3): 277–295. doi:10.1145/256157.256160. S2CID 6192031.
  • Hamilton, William Rowan (1853). Lectures on quaternions. Dublin: Hodges and Smith. tr. 522.
  • Graves, R.P. Life of Sir William Rowan Hamilton. Dublin Hodges, Figgis. tr. 635–636.
  • Thompson, Silvanus Phillips (1910). The life of William Thomson (Vol. 2). London, Macmillan. tr. 1138.
  • Heaviside, Oliver (1893). Electromagnetic Theory. I. London, UK: The Electrician Printing and Publishing Company. tr. 134–135.
  • Ludwik Silberstein (1924). Preface to second edition of The Theory of Relativity
  • Altmann, Simon L. (1986). Rotations, quaternions, and double groups. Clarendon Press. ISBN 0-19-855372-2. LCCN 85013615.

arxiv.org

  • Hanson, Jason (2011). "Rotations in three, four, and five dimensions". arΧiv:1103.5263 [math.MG]. 

books.google.com

bridgesmathart.org

archive.bridgesmathart.org

clifford-algebras.org

cmu.edu

cs.cmu.edu

cornell.edu

dlxs2.library.cornell.edu

classe.cornell.edu

diva-portal.org

doi.org

  • Một góc nhìn cá nhân hơn đến từ Joachim Lambek trong 1995. Ông viết trong bài văn If Hamilton had prevailed: quaternions in physics (dịch: Nếu Hamilton thắng thế: quaternion trong vật lý) rằng : "My own interest as a graduate student was raised by the inspiring book by Silberstein". Ông kết luận bằng phát biểu rằng "I firmly believe that quaternions can supply a shortcut for pure mathematicians who wish to familiarize themselves with certain aspects of theoretical physics." (dịch: Tôi tin rằng các quaternion có thể dùng làm đường tắt cho những nhà toán học thuần tuý muốn làm quen với một số nội dung của vật lý lý thuyết) Lambek, J. (1995). “If Hamilton had prevailed: Quaternions in physics”. Math. Intelligencer. 17 (4): 7–15. doi:10.1007/BF03024783.
  • Kunze, Karsten; Schaeben, Helmut (tháng 11 năm 2004). “The Bingham distribution of quaternions and its spherical radon transform in texture analysis”. Mathematical Geology. 36 (8): 917–943. doi:10.1023/B:MATG.0000048799.56445.59. S2CID 55009081.
  • Shoemake, Ken (1985). “Animating Rotation with Quaternion Curves” (PDF). Computer Graphics. 19 (3): 245–254. doi:10.1145/325165.325242. Presented at SIGGRAPH '85.
  • Girard, P.R. (1984). “The quaternion group and modern physics”. European Journal of Physics. 5 (1): 25–32. Bibcode:1984EJPh....5...25G. doi:10.1088/0143-0807/5/1/007. S2CID 250775753.
  • Girard, Patrick R. (1999). “Einstein's equations and Clifford algebra” (PDF). Advances in Applied Clifford Algebras. 9 (2): 225–230. doi:10.1007/BF03042377. S2CID 122211720. Bản gốc (PDF) lưu trữ ngày 17 tháng 12 năm 2010.
  • Hardy (1881). “Elements of Quaternions”. Science. library.cornell.edu. 2 (75): 65. doi:10.1126/science.os-2.75.564. PMID 17819877.
  • Farebrother, Richard William; Groß, Jürgen; Troschke, Sven-Oliver (2003). “Matrix representation of quaternions”. Linear Algebra and Its Applications. 362: 251–255. doi:10.1016/s0024-3795(02)00535-9.
  • Porteous, Ian R. (1995). “Chapter 8: Quaternions”. Clifford Algebras and the Classical Groups (PDF). Cambridge Studies in Advanced Mathematics. 50. Cambridge: Cambridge University Press. tr. 60. doi:10.1017/CBO9780511470912.009. ISBN 9780521551779. MR 1369094. OCLC 32348823.
  • Park, F.C.; Ravani, Bahram (1997). “Smooth invariant interpolation of rotations”. ACM Transactions on Graphics. 16 (3): 277–295. doi:10.1145/256157.256160. S2CID 6192031.

ed.ac.uk

maths.ed.ac.uk

euclideanspace.com

  • “Maths – Transformations using Quaternions”. EuclideanSpace. A rotation of q1 followed by a rotation of q2 is equivalent to a single rotation of q2 q1. Note the reversal of order, that is, we put the first rotation on the right hand side of the multiplication.

gamasutra.com

  • Tomb Raider (1996) thường được chú tích là trò chơi điện tử thương mại đầu tiên sử dụng quaternion để đạt sự trơn suốt khi quay ba chiều. Xem chẳng hạn Nick Bobick (tháng 7 năm 1998). “Rotating objects using quaternions”. Game Developer.

harvard.edu

ui.adsabs.harvard.edu

hut.fi

lce.hut.fi

indiana.edu

cs.indiana.edu

loc.gov

lccn.loc.gov

nih.gov

pubmed.ncbi.nlm.nih.gov

nugae.wordpress.com

projecteuclid.org

quantamagazine.org

semanticscholar.org

api.semanticscholar.org

tcd.ie

maths.tcd.ie

tony5m17h.net

ucr.edu

math.ucr.edu

web.archive.org

wolframalpha.com

worldcat.org

zbmath.org