Berger, Robert, The undecidability of the domino problem, Memoirs of the American Mathematical Society, 1966, 66: 72, MR 0216954. Berger coins the term "Wang tiles", and demonstrates the first aperiodic set of them.
Berger, Robert, The undecidability of the domino problem, Memoirs of the American Mathematical Society, 1966, 66: 72, MR 0216954. Berger coins the term "Wang tiles", and demonstrates the first aperiodic set of them.
Renz, Peter, Mathematical proof: What it is and what it ought to be, The Two-Year College Mathematics Journal, 1981, 12 (2): 83–103, doi:10.2307/3027370.
Cohen, Michael F.; Shade, Jonathan; Hiller, Stefan; Deussen, Oliver, Wang tiles for image and texture generation, ACM SIGGRAPH 2003(PDF), New York, NY, USA: ACM: 287–294, 2003 [2019-08-13], ISBN 1-58113-709-5, doi:10.1145/1201775.882265, 原始内容存档于2006-03-18. Introduces stochastic tiling.
Stam, Jos, Aperiodic Texture Mapping(PDF), 1997 [2019-08-13], (原始内容(PDF)存档于2016-04-30). Introduces the idea of using Wang tiles for texture variation, with a deterministic substitution system.
Stam, Jos, Aperiodic Texture Mapping(PDF), 1997 [2019-08-13], (原始内容(PDF)存档于2016-04-30). Introduces the idea of using Wang tiles for texture variation, with a deterministic substitution system.
Cohen, Michael F.; Shade, Jonathan; Hiller, Stefan; Deussen, Oliver, Wang tiles for image and texture generation, ACM SIGGRAPH 2003(PDF), New York, NY, USA: ACM: 287–294, 2003 [2019-08-13], ISBN 1-58113-709-5, doi:10.1145/1201775.882265, 原始内容存档于2006-03-18. Introduces stochastic tiling.