GCD環 (Chinese Wikipedia)

Analysis of information sources in references of the Wikipedia article "GCD環" in Chinese language version.

refsWebsite
Global rank Chinese rank
1st place
1st place
6th place
4th place
low place
4,528th place
low place
low place
451st place
935th place

ams.org (Global: 451st place; Chinese: 935th place)

  • Ali, Majid M.; Smith, David J., Generalized GCD rings. II, Beiträge zur Algebra und Geometrie, 2003, 44 (1): 75–98 [2015-08-26], MR 1990985, (原始内容存档于2015-09-24) . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".

archive.org (Global: 6th place; Chinese: 4th place)

emis.de (Global: low place; Chinese: low place)

  • Ali, Majid M.; Smith, David J., Generalized GCD rings. II, Beiträge zur Algebra und Geometrie, 2003, 44 (1): 75–98 [2015-08-26], MR 1990985, (原始内容存档于2015-09-24) . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".

planetmath.org (Global: low place; Chinese: 4,528th place)

web.archive.org (Global: 1st place; Chinese: 1st place)

  • planetmath proof. [2015-08-26]. (原始内容存档于2012-03-15). 
  • Ali, Majid M.; Smith, David J., Generalized GCD rings. II, Beiträge zur Algebra und Geometrie, 2003, 44 (1): 75–98 [2015-08-26], MR 1990985, (原始内容存档于2015-09-24) . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".