升力 (Chinese Wikipedia)

Analysis of information sources in references of the Wikipedia article "升力" in Chinese language version.

refsWebsite
Global rank Chinese rank
1st place
1st place
2nd place
23rd place
75th place
140th place
5,286th place
low place
18th place
57th place
11th place
332nd place
6th place
4th place
4,352nd place
3,443rd place
low place
low place
2,720th place
2,960th place
2,204th place
1,725th place
low place
low place
1,911th place
1,519th place
low place
low place
low place
low place
low place
low place
14th place
18th place
low place
low place
30th place
111th place
415th place
500th place
576th place
1,959th place
low place
low place
low place
low place
low place
low place
low place
low place
1,725th place
1,164th place
low place
low place

aapt.org

tpt.aapt.org

  • "Unfortunately, this explanation [fails] on three counts. First, an airfoil need not have more curvature on its top than on its bottom. Airplanes can and do fly with perfectly symmetrical airfoils; that is with airfoils that have the same curvature top and bottom. Second, even if a humped-up (cambered) shape is used, the claim that the air must traverse the curved top surface in the same time as it does the flat bottom surface...is fictional. We can quote no physical law that tells us this. Third—and this is the most serious—the common textbook explanation, and the diagrams that accompany it, describe a force on the wing with no net disturbance to the airstream. This constitutes a violation of Newton's third law." Bernoulli and Newton in Fluid Mechanics Norman F. Smith The Physics Teacher November 1972 Volume 10, Issue 8, p. 451 Archived copy. [2011-08-04]. (原始内容存档于2012-03-17). 

aip.org

scitation.aip.org

  • "This classic explanation is based on the difference of streaming velocities caused by the airfoil. There remains, however, a question: How does the airfoil cause the difference in streaming velocities? Some books don't give any answer, while others just stress the picture of the streamlines, saying the airfoil reduces the separations of the streamlines at the upper side. They do not say how the airfoil manages to do this. Thus this is not a sufficient answer." Klaus Weltner Bernoulli's Law and Aerodynamic Lifting Force The Physics Teacher February 1990 p. 84. [3] [永久失效連結]
  • "The airfoil of the airplane wing, according to the textbook explanation that is more or less standard in the United States, has a special shape with more curvature on top than on the bottom; consequently, the air must travel farther over the top surface than over the bottom surface. Because the air must make the trip over the top and bottom surfaces in the same elapsed time ..., the velocity over the top surface will be greater than over the bottom. According to Bernoulli's theorem, this velocity difference produces a pressure difference which is lift." Bernoulli and Newton in Fluid Mechanics Norman F. Smith The Physics Teacher November 1972 Volume 10, Issue 8, p. 451 [4] [永久失效連結]

alphatrainer.com

  • "The lift on the body is simple...it's the reaction of the solid body to the turning of a moving fluid...Now why does the fluid turn the way that it does? That's where the complexity enters in because we are dealing with a fluid. ...The cause for the flow turning is the simultaneous conservation of mass, momentum (both linear and angular), and energy by the fluid. And it's confusing for a fluid because the mass can move and redistribute itself (unlike a solid), but can only do so in ways that conserve momentum (mass times velocity) and energy (mass times velocity squared)... A change in velocity in one direction can cause a change in velocity in a perpendicular direction in a fluid, which doesn't occur in solid mechanics... So exactly describing how the flow turns is a complex problem; too complex for most people to visualize. So we make up simplified "models". And when we simplify, we leave something out. So the model is flawed. Most of the arguments about lift generation come down to people finding the flaws in the various models, and so the arguments are usually very legitimate." Tom Benson of NASA's Glenn Research Center in an interview with AlphaTrainer.Com Archived copy - Tom Benson Interview. [2012-07-26]. (原始内容存档于2012-04-27). 

archive.org

  • "...if the air is to produce an upward force on the wing, the wing must produce a downward force on the air. Because under these circumstances air cannot sustain a force, it is deflected, or accelerated, downward. Newton's second law gives us the means for quantifying the lift force: Flift = m∆v/∆t = ∆(mv)/∆t. The lift force is equal to the time rate of change of momentum of the air." Smith, Norman F. Bernoulli and Newton in Fluid Mechanics. The Physics Teacher. 1972, 10 (8): 451. Bibcode:1972PhTea..10..451S. doi:10.1119/1.2352317. 
  • Smith, Norman F. Bernoulli, Newton and Dynamic Lift Part I. School Science and Mathematics. 1973, 73 (3): 181. doi:10.1111/j.1949-8594.1973.tb08998.x. 
  • Anderson, John. Introduction to Flight. Boston: McGraw-Hill Higher Education. 2005: 355. ISBN 978-0072825695. It is then assumed that these two elements must meet up at the trailing edge, and because the running distance over the top surface of the airfoil is longer than that over the bottom surface, the element over the top surface must move faster. This is simply not true 

archive.today

  • "Essentially, due to the presence of the wing (its shape and inclination to the incoming flow, the so-called angle of attack), the flow is given a downward deflection. It is Newton’s third law at work here, with the flow then exerting a reaction force on the wing in an upward direction, thus generating lift." Vassilis Spathopoulos - Flight Physics for Beginners: Simple Examples of Applying Newton’s Laws The Physics Teacher Vol. 49, September 2011 p. 373 [2]

arvelgentry.com

  • "One explanation of how a wing . . gives lift is that as a result of the shape of the airfoil, the air flows faster over the top than it does over the bottom because it has farther to travel. Of course, with our thin-airfoil sails, the distance along the top is the same as along the bottom so this explanation of lift fails." The Aerodynamics of Sail Interaction by Arvel Gentry Proceedings of the Third AIAA Symposium on the Aero/Hydronautics of Sailing 1971 Archived copy (PDF). [2011-07-12]. (原始内容 (PDF)存档于2011-07-07). 

av8n.com

aviationexplorer.com

  • A false explanation for lift has been put forward in mainstream books, and even in scientific exhibitions. Known as the "equal transit-time" explanation, it states that the parcels of air which are divided by an airfoil must rejoin again; because of the greater curvature (and hence longer path) of the upper surface of an aerofoil, the air going over the top must go faster in order to 'catch up' with the air flowing around the bottom. Therefore, because of its higher speed the pressure of the air above the airfoil must be lower. Despite the fact that this 'explanation' is probably the most common of all, it is false. It has recently been dubbed the "Equal transit-time fallacy".Fixed-wing aircraft facts and how aircraft fly. [2009-07-07]. (原始内容存档于2009-06-03). 

calstatela.edu

instructional1.calstatela.edu

doi.org

ed.gov

eric.ed.gov

  • "...the air is described as producing a force on the object without the object having any opposite effect on the air. Such a condition, we should quickly recognize, embodies an action without a reaction, which is, according to Newton’s Third Law, impossible." Norman F. Smith Bernoulli, Newton, and Dynamic Lift Part I School Science and Mathematics, 73, 3, March 1973 Smith, Norman F. Bernoulli, Newton, and Dynamic Lift, Part I. Bernoulli's Theorem: Paradox or Physical Law?. School Science and Mathematics. 1972-11-30 [2015-01-19]. (原始内容存档于2015-01-19). 

fiu.edu

allstar.fiu.edu

  • "There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoulli’s principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?" How Airplanes Fly: A Physical Description of Lift David Anderson and Scott Eberhardt Archived copy. [2016-01-26]. (原始内容存档于2016-01-26). 
  • Anderson, David; Eberhart, Scott, How Airplanes Fly: A Physical Description of Lift, 1999 [2008-06-04], (原始内容存档于2016-01-26) 

flugmodellbau.de

corsair.flugmodellbau.de

  • "The generation of lift may be explained by starting from the shape of streamtubes above and below an airfoil. With a constriction above and an expansion below, it is easy to demonstrate lift, again via the Bernoulli equation. However, the reason for the shape of the streamtubes remains obscure..." Jaakko Hoffren Quest for an Improved Explanation of Lift American Institute of Aeronautics and Astronautics 2001 p. 3 Archived copy (PDF). [2012-07-26]. (原始内容 (PDF)存档于2013-12-07). 
  • "A concept...uses a symmetrical convergent-divergent channel, like a longitudinal section of a Venturi tube, as the starting point . . when such a device is put in a flow, the static pressure in the tube decreases. When the upper half of the tube is removed, a geometry resembling the airfoil is left, and suction is still maintained on top of it. Of course, this explanation is flawed too, because the geometry change affects the whole flowfield and there is no physics involved in the description." Jaakko Hoffren Quest for an Improved Explanation of Lift Section 4.3 American Institute of Aeronautics and Astronautics 2001 Archived copy (PDF). [2012-07-26]. (原始内容 (PDF)存档于2013-12-07). 

gsu.edu

hyperphysics.phy-astr.gsu.edu

  • "You can argue that the main lift comes from the fact that the wing is angled slightly upward so that air striking the underside of the wing is forced downward. The Newton's 3rd law reaction force upward on the wing provides the lift. Increasing the angle of attack can increase the lift, but it also increases drag so that you have to provide more thrust with the aircraft engines" Hyperphysics Georgia State University Dept. of Physics and Astronomy Angle of Attack for Airfoil. [26 July 2012]. (原始内容存档于October 14, 2012). 
  • "It requires adjustment of the angle of attack, but as clearly demonstrated in almost every air show, it can be done." Hyperphysics GSU Dept. of Physics and Astronomy [7] 互联网档案馆存檔,存档日期July 8, 2012,.

harvard.edu

ui.adsabs.harvard.edu

iop.org

iopscience.iop.org

  • "...the important thing about an aerofoil . . is not so much that its upper surface is humped and its lower surface is nearly flat, but simply that it moves through the air at an angle. This also avoids the otherwise difficult paradox that an aircraft can fly upside down!" N. H. Fletcher Mechanics of Flight Physics Education July 1975 [6]

mit.edu

web.mit.edu

  • Flow Visualization. National Committee for Fluid Mechanics Films/Educational Development Center. [2009-01-21]. (原始内容存档于2016-10-21).  A visualization of the typical retarded flow over the lower surface of the wing and the accelerated flow over the upper surface starts at 5:29 in the video.

nasa.gov

grc.nasa.gov

  • What is Lift?. NASA Glenn Research Center. [2009-03-04]. (原始内容存档于2009-03-09). 
  • Forces in a Climb. NASA. [2015-02-06]. (原始内容存档于2015-02-16) (英语). 
  • "There are many theories of how lift is generated. Unfortunately, many of the theories found in encyclopedias, on web sites, and even in some textbooks are incorrect, causing unnecessary confusion for students." NASA Archived copy. [2012-04-20]. (原始内容存档于2014-04-27). 
  • "Lift is a force generated by turning a moving fluid... If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is changed in magnitude, direction, or both. Changing the velocity creates a net force on the body." Lift from Flow Turning. NASA Glenn Research Center. [2009-07-07]. (原始内容存档于2011-07-05). 
  • "The problem with the 'Venturi' theory is that it attempts to provide us with the velocity based on an incorrect assumption (the constriction of the flow produces the velocity field). We can calculate a velocity based on this assumption, and use Bernoulli's equation to compute the pressure, and perform the pressure-area calculation and the answer we get does not agree with the lift that we measure for a given airfoil." NASA Glenn Research Center Archived copy. [2012-07-26]. (原始内容存档于2012-07-17). 
  • "The actual velocity over the top of an airfoil is much faster than that predicted by the "Longer Path" theory and particles moving over the top arrive at the trailing edge before particles moving under the airfoil." Glenn Research Center. Incorrect Lift Theory. NASA. 2006-03-15 [2010-08-12]. (原始内容存档于2014-04-27). 

planeandpilotmag.com

raskincenter.org

jef.raskincenter.org

regenpress.com

  • The fallacy of equal transit time can be deduced from consideration of a flat plate, which will indeed produce lift, as anyone who has handled a sheet of plywood in the wind can testify. Gale M. Craig. Physical principles of winged flight. [2009-07-07]. (原始内容存档于2009-08-02). 

scienceeducationreview.com

  • Fallacy 1: Air takes the same time to move across the top of an aerofoil as across the bottom. Peter Eastwell, Bernoulli? Perhaps, but What About Viscosity? (PDF), The Science Education Review, 2007, 6 (1) [2009-07-14], (原始内容存档 (PDF)于2009-11-28) 

scitation.org

aapt.scitation.org

  • "Most of the texts present the Bernoulli formula without derivation, but also with very little explanation. When applied to the lift of an airfoil, the explanation and diagrams are almost always wrong. At least for an introductory course, lift on an airfoil should be explained simply in terms of Newton’s Third Law, with the thrust up being equal to the time rate of change of momentum of the air downwards." Cliff Swartz et al. Quibbles, Misunderstandings, and Egregious Mistakes - Survey of High-School Physics Texts THE PHYSICS TEACHER Vol. 37, May 1999 p. 300 [1]页面存档备份,存于互联网档案馆
  • Thus a distribution of the pressure is created which is given in Euler's equation. The physical reason is the aerofoil which forces the streamline to follow its curved surface. The low pressure at the upper side of the aerofoil is a consequence of the curved surface." A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am. J. Phys. Vol.55 No.January 1, 1987, p. 53 [5]页面存档备份,存于互联网档案馆

semanticscholar.org

api.semanticscholar.org

semanticscholar.org

telegraph.co.uk

  • Archived copy. [2012-06-10]. (原始内容存档于2012-06-30).  Cambridge scientist debunks flying myth UK Telegraph 24 January 2012

uba.ar

df.uba.ar

  • "Both approaches are equally valid and equally correct, a concept that is central to the conclusion of this article." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • "Birds and aircraft fly because they are constantly pushing air downwards: L = Δp/Δt where L= lift force, and Δp/Δt is the rate at which downward momentum is imparted to the airflow." Flight without Bernoulli Chris Waltham THE PHYSICS TEACHER Vol. 36, Nov. 1998 Archived copy (PDF). [2011-08-04]. (原始内容存档 (PDF)于2011-09-28). 
  • "The effect of squeezing streamlines together as they divert around the front of an airfoil shape is that the velocity must increase to keep the mass flow constant since the area between the streamlines has become smaller." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • "This answers the apparent mystery of how a symmetric airfoil can produce lift. ... This is also true of a flat plate at non-zero angle of attack." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • "...do you remember hearing that troubling business about the particles moving over the curved top surface having to go faster than the particles that went underneath, because they have a longer path to travel but must still get there at the same time? This is simply not true. It does not happen." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 PDF页面存档备份,存于互联网档案馆
  • "Analysis of fluid flow is typically presented to engineering students in terms of three fundamental principles: conservation of mass, conservation of momentum, and conservation of energy." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 

web.archive.org

  • What is Lift?. NASA Glenn Research Center. [2009-03-04]. (原始内容存档于2009-03-09). 
  • Forces in a Climb. NASA. [2015-02-06]. (原始内容存档于2015-02-16) (英语). 
  • "There are many theories of how lift is generated. Unfortunately, many of the theories found in encyclopedias, on web sites, and even in some textbooks are incorrect, causing unnecessary confusion for students." NASA Archived copy. [2012-04-20]. (原始内容存档于2014-04-27). 
  • "Most of the texts present the Bernoulli formula without derivation, but also with very little explanation. When applied to the lift of an airfoil, the explanation and diagrams are almost always wrong. At least for an introductory course, lift on an airfoil should be explained simply in terms of Newton’s Third Law, with the thrust up being equal to the time rate of change of momentum of the air downwards." Cliff Swartz et al. Quibbles, Misunderstandings, and Egregious Mistakes - Survey of High-School Physics Texts THE PHYSICS TEACHER Vol. 37, May 1999 p. 300 [1]页面存档备份,存于互联网档案馆
  • "One explanation of how a wing . . gives lift is that as a result of the shape of the airfoil, the air flows faster over the top than it does over the bottom because it has farther to travel. Of course, with our thin-airfoil sails, the distance along the top is the same as along the bottom so this explanation of lift fails." The Aerodynamics of Sail Interaction by Arvel Gentry Proceedings of the Third AIAA Symposium on the Aero/Hydronautics of Sailing 1971 Archived copy (PDF). [2011-07-12]. (原始内容 (PDF)存档于2011-07-07). 
  • "The lift on the body is simple...it's the reaction of the solid body to the turning of a moving fluid...Now why does the fluid turn the way that it does? That's where the complexity enters in because we are dealing with a fluid. ...The cause for the flow turning is the simultaneous conservation of mass, momentum (both linear and angular), and energy by the fluid. And it's confusing for a fluid because the mass can move and redistribute itself (unlike a solid), but can only do so in ways that conserve momentum (mass times velocity) and energy (mass times velocity squared)... A change in velocity in one direction can cause a change in velocity in a perpendicular direction in a fluid, which doesn't occur in solid mechanics... So exactly describing how the flow turns is a complex problem; too complex for most people to visualize. So we make up simplified "models". And when we simplify, we leave something out. So the model is flawed. Most of the arguments about lift generation come down to people finding the flaws in the various models, and so the arguments are usually very legitimate." Tom Benson of NASA's Glenn Research Center in an interview with AlphaTrainer.Com Archived copy - Tom Benson Interview. [2012-07-26]. (原始内容存档于2012-04-27). 
  • "Both approaches are equally valid and equally correct, a concept that is central to the conclusion of this article." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • Ison, David, Bernoulli Or Newton: Who's Right About Lift?, Plane & Pilot, [2011-01-14], (原始内容存档于2015-09-24) 
  • "Lift is a force generated by turning a moving fluid... If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is changed in magnitude, direction, or both. Changing the velocity creates a net force on the body." Lift from Flow Turning. NASA Glenn Research Center. [2009-07-07]. (原始内容存档于2011-07-05). 
  • "Birds and aircraft fly because they are constantly pushing air downwards: L = Δp/Δt where L= lift force, and Δp/Δt is the rate at which downward momentum is imparted to the airflow." Flight without Bernoulli Chris Waltham THE PHYSICS TEACHER Vol. 36, Nov. 1998 Archived copy (PDF). [2011-08-04]. (原始内容存档 (PDF)于2011-09-28). 
  • "The effect of squeezing streamlines together as they divert around the front of an airfoil shape is that the velocity must increase to keep the mass flow constant since the area between the streamlines has become smaller." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • "The generation of lift may be explained by starting from the shape of streamtubes above and below an airfoil. With a constriction above and an expansion below, it is easy to demonstrate lift, again via the Bernoulli equation. However, the reason for the shape of the streamtubes remains obscure..." Jaakko Hoffren Quest for an Improved Explanation of Lift American Institute of Aeronautics and Astronautics 2001 p. 3 Archived copy (PDF). [2012-07-26]. (原始内容 (PDF)存档于2013-12-07). 
  • "There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoulli’s principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?" How Airplanes Fly: A Physical Description of Lift David Anderson and Scott Eberhardt Archived copy. [2016-01-26]. (原始内容存档于2016-01-26). 
  • "The problem with the 'Venturi' theory is that it attempts to provide us with the velocity based on an incorrect assumption (the constriction of the flow produces the velocity field). We can calculate a velocity based on this assumption, and use Bernoulli's equation to compute the pressure, and perform the pressure-area calculation and the answer we get does not agree with the lift that we measure for a given airfoil." NASA Glenn Research Center Archived copy. [2012-07-26]. (原始内容存档于2012-07-17). 
  • "A concept...uses a symmetrical convergent-divergent channel, like a longitudinal section of a Venturi tube, as the starting point . . when such a device is put in a flow, the static pressure in the tube decreases. When the upper half of the tube is removed, a geometry resembling the airfoil is left, and suction is still maintained on top of it. Of course, this explanation is flawed too, because the geometry change affects the whole flowfield and there is no physics involved in the description." Jaakko Hoffren Quest for an Improved Explanation of Lift Section 4.3 American Institute of Aeronautics and Astronautics 2001 Archived copy (PDF). [2012-07-26]. (原始内容 (PDF)存档于2013-12-07). 
  • "This answers the apparent mystery of how a symmetric airfoil can produce lift. ... This is also true of a flat plate at non-zero angle of attack." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • "Unfortunately, this explanation [fails] on three counts. First, an airfoil need not have more curvature on its top than on its bottom. Airplanes can and do fly with perfectly symmetrical airfoils; that is with airfoils that have the same curvature top and bottom. Second, even if a humped-up (cambered) shape is used, the claim that the air must traverse the curved top surface in the same time as it does the flat bottom surface...is fictional. We can quote no physical law that tells us this. Third—and this is the most serious—the common textbook explanation, and the diagrams that accompany it, describe a force on the wing with no net disturbance to the airstream. This constitutes a violation of Newton's third law." Bernoulli and Newton in Fluid Mechanics Norman F. Smith The Physics Teacher November 1972 Volume 10, Issue 8, p. 451 Archived copy. [2011-08-04]. (原始内容存档于2012-03-17). 
  • Archived copy. [2012-06-10]. (原始内容存档于2012-06-30).  Cambridge scientist debunks flying myth UK Telegraph 24 January 2012
  • Flow Visualization. National Committee for Fluid Mechanics Films/Educational Development Center. [2009-01-21]. (原始内容存档于2016-10-21).  A visualization of the typical retarded flow over the lower surface of the wing and the accelerated flow over the upper surface starts at 5:29 in the video.
  • "...do you remember hearing that troubling business about the particles moving over the curved top surface having to go faster than the particles that went underneath, because they have a longer path to travel but must still get there at the same time? This is simply not true. It does not happen." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 PDF页面存档备份,存于互联网档案馆
  • "The actual velocity over the top of an airfoil is much faster than that predicted by the "Longer Path" theory and particles moving over the top arrive at the trailing edge before particles moving under the airfoil." Glenn Research Center. Incorrect Lift Theory. NASA. 2006-03-15 [2010-08-12]. (原始内容存档于2014-04-27). 
  • "...the air is described as producing a force on the object without the object having any opposite effect on the air. Such a condition, we should quickly recognize, embodies an action without a reaction, which is, according to Newton’s Third Law, impossible." Norman F. Smith Bernoulli, Newton, and Dynamic Lift Part I School Science and Mathematics, 73, 3, March 1973 Smith, Norman F. Bernoulli, Newton, and Dynamic Lift, Part I. Bernoulli's Theorem: Paradox or Physical Law?. School Science and Mathematics. 1972-11-30 [2015-01-19]. (原始内容存档于2015-01-19). 
  • A false explanation for lift has been put forward in mainstream books, and even in scientific exhibitions. Known as the "equal transit-time" explanation, it states that the parcels of air which are divided by an airfoil must rejoin again; because of the greater curvature (and hence longer path) of the upper surface of an aerofoil, the air going over the top must go faster in order to 'catch up' with the air flowing around the bottom. Therefore, because of its higher speed the pressure of the air above the airfoil must be lower. Despite the fact that this 'explanation' is probably the most common of all, it is false. It has recently been dubbed the "Equal transit-time fallacy".Fixed-wing aircraft facts and how aircraft fly. [2009-07-07]. (原始内容存档于2009-06-03). 
  • ...it leaves the impression that Professor Bernoulli is somehow to blame for the "equal transit time" fallacy... John S. Denker. Critique of "How Airplanes Fly". 1999 [2009-07-07]. (原始内容存档于2009-11-20). 
  • The fallacy of equal transit time can be deduced from consideration of a flat plate, which will indeed produce lift, as anyone who has handled a sheet of plywood in the wind can testify. Gale M. Craig. Physical principles of winged flight. [2009-07-07]. (原始内容存档于2009-08-02). 
  • Fallacy 1: Air takes the same time to move across the top of an aerofoil as across the bottom. Peter Eastwell, Bernoulli? Perhaps, but What About Viscosity? (PDF), The Science Education Review, 2007, 6 (1) [2009-07-14], (原始内容存档 (PDF)于2009-11-28) 
  • Anderson, David; Eberhart, Scott, How Airplanes Fly: A Physical Description of Lift, 1999 [2008-06-04], (原始内容存档于2016-01-26) 
  • Raskin, Jef, Coanda Effect: Understanding Why Wings Work, 1994 [2019-08-25], (原始内容存档于2007-09-28) 
  • Denker, JS, Fallacious Model of Lift Production, [2008-08-18], (原始内容存档于2009-03-02) 
  • Thus a distribution of the pressure is created which is given in Euler's equation. The physical reason is the aerofoil which forces the streamline to follow its curved surface. The low pressure at the upper side of the aerofoil is a consequence of the curved surface." A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am. J. Phys. Vol.55 No.January 1, 1987, p. 53 [5]页面存档备份,存于互联网档案馆
  • "You can argue that the main lift comes from the fact that the wing is angled slightly upward so that air striking the underside of the wing is forced downward. The Newton's 3rd law reaction force upward on the wing provides the lift. Increasing the angle of attack can increase the lift, but it also increases drag so that you have to provide more thrust with the aircraft engines" Hyperphysics Georgia State University Dept. of Physics and Astronomy Angle of Attack for Airfoil. [26 July 2012]. (原始内容存档于October 14, 2012). 
  • "It requires adjustment of the angle of attack, but as clearly demonstrated in almost every air show, it can be done." Hyperphysics GSU Dept. of Physics and Astronomy [7] 互联网档案馆存檔,存档日期July 8, 2012,.
  • "Analysis of fluid flow is typically presented to engineering students in terms of three fundamental principles: conservation of mass, conservation of momentum, and conservation of energy." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). [2009-09-10]. (原始内容存档 (PDF)于2009-04-11). 
  • Elements of Potential Flow California State University Los Angeles Faculty Web Directory. [26 July 2012]. (原始内容存档于November 11, 2012).