The size of the state space and game tree for chess were first estimated in Claude Shannon. Programming a Computer for Playing Chess(PDF). Philosophical Magazine. 1950, 41 (314) [2014-02-12]. (原始内容(PDF)存档于2010-03-15). Shannon gave estimates of 1043 and 10120 respectively, smaller than the upper bound in the table,
which is detailed in Shannon number.
John Tromp and Gunnar Farneb?ck. Combinatorics of Go. 2007.[永久失效連結] This paper derives the bounds 48<log(log(N))<171 on the number of possible games N.
doi.org
H. J. van den Herik; J. W. H. M. Uiterwijk; J. van Rijswijck. Games solved: Now and in the future. Artificial Intelligence. 2002, 134 (1–2): 277–311. doi:10.1016/S0004-3702(01)00152-7.
Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of Pebble Games and Complete Problems. SIAM Journal on Computing. 1979, 8 (4): 574–586. doi:10.1137/0208046. Proves completeness of the generalization to arbitrary graphs.
S. Iwata and T. Kasai. The Othello game on an n*n board is PSPACE-complete. Theor. Comp. Sci. 1994, 123 (2): 329–340. doi:10.1016/0304-3975(94)90131-7.
Chang-Ming Xu; Ma, Z.M.; Jun-Jie Tao; Xin-He Xu. Enhancements of proof number search in connect6. 2009 Chinese Control and Decision Conference. 2009: 4525. ISBN 978-1-4244-2722-2. doi:10.1109/CCDC.2009.5191963.
Shi-Jim Yen, Jr-Chang Chen, Tai-Ning Yang, and Shun-Chin Hsu. Computer Chinese Chess(PDF). International Computer Games Association Journal. March 2004, 27 (1): 3–18 [2014-02-12]. (原始内容(PDF)存档于2007-06-14).
Shi-Jim Yen, Jr-Chang Chen, Tai-Ning Yang, and Shun-Chin Hsu. Computer Chinese Chess(PDF). International Computer Games Association Journal. March 2004, 27 (1): 3–18 [2014-02-12]. (原始内容(PDF)存档于2007-06-14).
The size of the state space and game tree for chess were first estimated in Claude Shannon. Programming a Computer for Playing Chess(PDF). Philosophical Magazine. 1950, 41 (314) [2014-02-12]. (原始内容(PDF)存档于2010-03-15). Shannon gave estimates of 1043 and 10120 respectively, smaller than the upper bound in the table,
which is detailed in Shannon number.