史特靈公式 (Chinese Wikipedia)

Analysis of information sources in references of the Wikipedia article "史特靈公式" in Chinese language version.

refsWebsite
Global rank Chinese rank
2nd place
23rd place
26th place
113th place
451st place
935th place

ams.org

  • Le Cam, L., The central limit theorem around 1935, Statistical Science, 1986, 1 (1): 78–96, JSTOR 2245503, MR 0833276, doi:10.1214/ss/1177013818 ; see p. 81, "The result, obtained using a formula originally proved by de Moivre but now called Stirling's formula, occurs in his 'Doctrine of Chances' of 1733."

doi.org

  • Dutka, Jacques, The early history of the factorial function, Archive for History of Exact Sciences, 1991, 43 (3): 225–249, doi:10.1007/BF00389433 
  • Le Cam, L., The central limit theorem around 1935, Statistical Science, 1986, 1 (1): 78–96, JSTOR 2245503, MR 0833276, doi:10.1214/ss/1177013818 ; see p. 81, "The result, obtained using a formula originally proved by de Moivre but now called Stirling's formula, occurs in his 'Doctrine of Chances' of 1733."
  • Pearson, Karl, Historical note on the origin of the normal curve of errors, Biometrika, 1924, 16 (3/4): 402–404 [p. 403], JSTOR 2331714, doi:10.2307/2331714, I consider that the fact that Stirling showed that De Moivre's arithmetical constant was does not entitle him to claim the theorem, [...] 

jstor.org

  • Le Cam, L., The central limit theorem around 1935, Statistical Science, 1986, 1 (1): 78–96, JSTOR 2245503, MR 0833276, doi:10.1214/ss/1177013818 ; see p. 81, "The result, obtained using a formula originally proved by de Moivre but now called Stirling's formula, occurs in his 'Doctrine of Chances' of 1733."
  • Pearson, Karl, Historical note on the origin of the normal curve of errors, Biometrika, 1924, 16 (3/4): 402–404 [p. 403], JSTOR 2331714, doi:10.2307/2331714, I consider that the fact that Stirling showed that De Moivre's arithmetical constant was does not entitle him to claim the theorem, [...]