formula in: G.M.Clemence, J.G.Porter, D.H.Sadler (1952): "Aberration in the lunar ephemeris", Astronomical Journal57(5) (#1198) pp.46..47 [2] (页面存档备份,存于互联网档案馆); but computed with the conventional value of 384400 km for the mean distance which gives a different rounding in the last digit.
nasa.gov
sunearth.gsfc.nasa.gov
see e.g.存档副本. [2006-12-17]. (原始内容存档于2007-02-02).; the IERS is the official source for these numbers; they provide TAI−UTChere (页面存档备份,存于互联网档案馆) and UT1−UTC here (页面存档备份,存于互联网档案馆); ΔT = 32.184s + (TAI−UTC) − (UT1−UTC)
npl.co.uk
kayelaby.npl.co.uk
Derived Constant #14 from the IAU (1976) System of Astronomical Constants (proceedings of IAU Sixteenth General Assembly (1976): Transactions of the IAU XVIB p.58 (1977)); or any astronomical almanac; or e.g.[1] (页面存档备份,存于互联网档案馆)
obspm.fr
hpiers.obspm.fr
see e.g.存档副本. [2006-12-17]. (原始内容存档于2007-02-02).; the IERS is the official source for these numbers; they provide TAI−UTChere (页面存档备份,存于互联网档案馆) and UT1−UTC here (页面存档备份,存于互联网档案馆); ΔT = 32.184s + (TAI−UTC) − (UT1−UTC)
Derived Constant #14 from the IAU (1976) System of Astronomical Constants (proceedings of IAU Sixteenth General Assembly (1976): Transactions of the IAU XVIB p.58 (1977)); or any astronomical almanac; or e.g.[1] (页面存档备份,存于互联网档案馆)
formula in: G.M.Clemence, J.G.Porter, D.H.Sadler (1952): "Aberration in the lunar ephemeris", Astronomical Journal57(5) (#1198) pp.46..47 [2] (页面存档备份,存于互联网档案馆); but computed with the conventional value of 384400 km for the mean distance which gives a different rounding in the last digit.
see e.g.存档副本. [2006-12-17]. (原始内容存档于2007-02-02).; the IERS is the official source for these numbers; they provide TAI−UTChere (页面存档备份,存于互联网档案馆) and UT1−UTC here (页面存档备份,存于互联网档案馆); ΔT = 32.184s + (TAI−UTC) − (UT1−UTC)