Analysis of information sources in references of the Wikipedia article "沙普利-福克曼引理" in Chinese language version.
Bertsekas, Dimitri P. 5.6 Large scale separable integer programming problems and the exponential method of multipliers [第5.6節:大規模可分整數規劃問題及乘子指數法]. Constrained optimization and Lagrange multiplier methods [受限優化和拉格朗日乘子法] 1982年Academic Press版的重印. Belmont, Mass.: Athena Scientific. 1996: xiii+395. ISBN 1-886529-04-3. MR 0690767 (英语).
Bertsekas (1996,第364–381頁)將拉格朗日對偶法用到發電排程上(即機組排程問題),此種問題有變量限制為整數,所以非凸:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. Optimal short-term scheduling of large-scale power systems [大規模電力系統的最優短期排程] (PDF). IEEE Transactions on Automatic Control. January 1983, 28 (1): 1–11 [2 February 2011]. doi:10.1109/tac.1983.1103136. (原始内容存档 (PDF)于2021-09-09) (英语). Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp. 432–443.
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).Wold & Juréen (1953,第146頁): Wold, Herman; Juréen, Lars (in association with Wold). 8 Some further applications of preference fields (pp. 129–148) [八、偏好域的其他應用]. Demand analysis: A study in econometrics [需求分析:計量經濟學研究]. Wiley publications in statistics. New York: John Wiley and Sons, Inc. 1953: xvi+358. MR 0064385 (英语).
Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Aumann, Robert J. Markets with a continuum of traders [連續統多個交易人的市場]. Econometrica. January–April 1964, 32 (1–2): 39–50. JSTOR 1913732. MR 0172689. doi:10.2307/1913732 (英语).
Aumann, Robert J. Integrals of set-valued functions [集合值函數的積分]. Journal of Mathematical Analysis and Applications. August 1965, 12 (1): 1–12. MR 0185073. doi:10.1016/0022-247X(65)90049-1
(英语).
Mas-Colell, Whinston & Green (1995,第627–630頁): Mas-Colell, Andreu; Whinston, Michael D.; Green, Jerry R. 17.1 Large economies and nonconvexities [第17.1節:大經濟體與非凸性]. Microeconomic theory [微觀經濟理論]. Oxford University Press. 1995. ISBN 978-0-19-507340-9 (英语).
Mas-Colell (1985,第52–55, 145–146, 152–153, and 274–275頁): Mas-Colell, Andreu. 1.L Averages of sets [第1.L節:集合的平均]. The Theory of general economic equilibrium: A differentiable approach [一般經濟均衡理論:可微分的進路]. Econometric Society monographs 9. Cambridge University Press. 1985. ISBN 0-521-26514-2. MR 1113262 (英语).
Hildenbrand (1974,第37, 115–116, 122, and 168頁): Hildenbrand, Werner. Core and equilibria of a large economy [大經濟體的核和均衡]. Princeton studies in mathematical economics 5. Princeton, N.J.: Princeton University Press. 1974: viii+251. ISBN 978-0-691-04189-6. MR 0389160 (英语).
Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语).Ellickson (1994,第xviii, 306–310, 312, 328–329, 347, and 352頁): Ellickson, Bryan. Competitive equilibrium: Theory and applications [競爭均衡:理論及應用]. Cambridge University Press. 1994. ISBN 978-0-521-31988-1. doi:10.2277/0521319889 (英语).
Starr, Ross M. 8 Convex sets, separation theorems, and non-convex sets in RN (new chapters 22 and 25–26 in (2011) second ed.) [第8章:RN中的凸集、分離定理、非凸集(及2011年第二版新增的第22、25、26諸章)]. General equilibrium theory: An introduction [一般均衡理論:導論] First. Cambridge, UK: Cambridge University Press. 1997: xxiii+250. ISBN 0-521-56473-5. MR 1462618 (英语).|issue=被忽略 (帮助)
勒馬雷沙爾的實驗,日後有下列論文討論:
Aardal (1995,第2–3頁): Aardal, Karen. Optima interview Claude Lemaréchal [Optima訪問克勞德·勒馬雷沙爾] (PDF). Optima: Mathematical Programming Society Newsletter. March 1995, 45: 2–4 [2 February 2011]. (原始内容存档 (PDF)于2021-09-09) (英语).
Hiriart-Urruty & Lemaréchal (1993,第143–145, 151, 153, and 156頁): Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. XII Abstract duality for practitioners [第十二章:實踐用的抽象對偶性]. Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods [凸分析和最小化算法,第二卷:進階理論及束法]. Grundlehren der Mathematischen Wissenschaften [數理科學的基本原理] 306. Berlin: Springer-Verlag. 1993: 136–193 (及pp. 334–335所列的文獻附註). ISBN 3-540-56852-2. MR 1295240 (英语).
Aubin & Ekeland (1976)及Ekeland (1999,第362–364頁)也考慮非凸最小值問題的閉凸包,即對原問題的蓋圖取閉凸包所得的新問題。Di Guglielmo推廣到研究非凸多目標優化問題的擬凸閉包,即對目標函數的下水平集取凸閉包所得的問題:
Di Guglielmo (1977,第287–288頁): Di Guglielmo, F. Nonconvex duality in multiobjective optimization [多目標優化的非凸對偶]. Mathematics of Operations Research. 1977, 2 (3): 285–291. JSTOR 3689518. MR 0484418. doi:10.1287/moor.2.3.285 (英语).
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).
Wold & Juréen (1953,第146頁): Wold, Herman; Juréen, Lars (in association with Wold). 8 Some further applications of preference fields (pp. 129–148) [八、偏好域的其他應用]. Demand analysis: A study in econometrics [需求分析:計量經濟學研究]. Wiley publications in statistics. New York: John Wiley and Sons, Inc. 1953: xvi+358. MR 0064385 (英语).
Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Farrell, M. J. On Convexity, efficiency, and markets: A Reply [論凸性、效率、市場:回覆]. Journal of Political Economy. October 1961a, 69 (5): 484–489. JSTOR 1828538. doi:10.1086/258541 (英语).
Farrell, M. J. The Convexity assumption in the theory of competitive markets: Rejoinder [競爭市場論的凸性假設:再回應]. Journal of Political Economy. October 1961b, 69 (5): 493. JSTOR 1828541. doi:10.1086/258544 (英语).
Koopmans (1961,第478頁)、Farrell (1959,第390–391頁)、Farrell (1961a,第484頁)、Bator (1961a,第482–483頁)、Rothenberg (1960,第438頁)、Starr (1969,第26頁)評論了Koopmans (1957,第1–126, 尤其 9–16 [1.3 Summation of opportunity sets]、 23–35 [1.6 Convex sets and the price implications of optimality]、 35–37 [1.7 The role of convexity assumptions in the analysis]三節頁):
Koopmans, Tjalling C. Allocation of resources and the price system [資源分配與價格制度]. Koopmans, Tjalling C (编). Three essays on the state of economic science [三篇論經濟科學現況]. New York: McGraw–Hill Book Company. 1957: 1–126. ISBN 0-07-035337-9 (英语).
Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).(Rothenberg, Jerome. Comments on non-convexity [評非凸性]. Journal of Political Economy. October 1961, 69 (5): 490–492. JSTOR 1828540. doi:10.1086/258543 (英语).)
Aumann, Robert J. Markets with a continuum of traders [連續統多個交易人的市場]. Econometrica. January–April 1964, 32 (1–2): 39–50. JSTOR 1913732. MR 0172689. doi:10.2307/1913732 (英语).
Aumann, Robert J. Integrals of set-valued functions [集合值函數的積分]. Journal of Mathematical Analysis and Applications. August 1965, 12 (1): 1–12. MR 0185073. doi:10.1016/0022-247X(65)90049-1
(英语).
Mas-Colell, Whinston & Green (1995,第627–630頁): Mas-Colell, Andreu; Whinston, Michael D.; Green, Jerry R. 17.1 Large economies and nonconvexities [第17.1節:大經濟體與非凸性]. Microeconomic theory [微觀經濟理論]. Oxford University Press. 1995. ISBN 978-0-19-507340-9 (英语).
Ellickson (1994,第xviii, 306–310, 312, 328–329, 347, and 352頁): Ellickson, Bryan. Competitive equilibrium: Theory and applications [競爭均衡:理論及應用]. Cambridge University Press. 1994. ISBN 978-0-521-31988-1. doi:10.2277/0521319889 (英语).
Starr, Ross M. 8 Convex sets, separation theorems, and non-convex sets in RN (new chapters 22 and 25–26 in (2011) second ed.) [第8章:RN中的凸集、分離定理、非凸集(及2011年第二版新增的第22、25、26諸章)]. General equilibrium theory: An introduction [一般均衡理論:導論] First. Cambridge, UK: Cambridge University Press. 1997: xxiii+250. ISBN 0-521-56473-5. MR 1462618 (英语).凸集的概念(即該集合包含連接其任意兩點的線段),已經多次成為1964年以前經濟理論的核心。引入積分理論研究經濟競爭後,得以新眼光看待此事:若經濟體的每個參與者,對應商品空間的某個任意集合,而又對一族不重要的參與者取平均,則所得的集合必然為凸。[德布魯附註:「此為A. A. 李亞普諾夫的定理的直接推論,參見Vind (1964)。」] 但⋯⋯諸價格函數⋯⋯可以因平均而產生的凸性解釋。商品空間中,對一族不重要參與者加總可以得到凸性,是經濟理論⋯⋯從積分理論得來的觀察。 [刪節後譯文]
Debreu, Gérard. The Mathematization of economic theory [經濟理論的數學化]. The American Economic Review. March 1991, 81 (Presidential address delivered at the 103rd meeting of the American Economic Association, 29 December 1990, Washington, DC): 1–7. JSTOR 2006785 (英语).
Bertsekas, Dimitri P. 5.6 Large scale separable integer programming problems and the exponential method of multipliers [第5.6節:大規模可分整數規劃問題及乘子指數法]. Constrained optimization and Lagrange multiplier methods [受限優化和拉格朗日乘子法] 1982年Academic Press版的重印. Belmont, Mass.: Athena Scientific. 1996: xiii+395. ISBN 1-886529-04-3. MR 0690767 (英语).
Bertsekas (1996,第364–381頁)將拉格朗日對偶法用到發電排程上(即機組排程問題),此種問題有變量限制為整數,所以非凸:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. Optimal short-term scheduling of large-scale power systems [大規模電力系統的最優短期排程] (PDF). IEEE Transactions on Automatic Control. January 1983, 28 (1): 1–11 [2 February 2011]. doi:10.1109/tac.1983.1103136. (原始内容存档 (PDF)于2021-09-09) (英语). Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp. 432–443.
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).Wold & Juréen (1953,第146頁): Wold, Herman; Juréen, Lars (in association with Wold). 8 Some further applications of preference fields (pp. 129–148) [八、偏好域的其他應用]. Demand analysis: A study in econometrics [需求分析:計量經濟學研究]. Wiley publications in statistics. New York: John Wiley and Sons, Inc. 1953: xvi+358. MR 0064385 (英语).
Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Farrell, M. J. On Convexity, efficiency, and markets: A Reply [論凸性、效率、市場:回覆]. Journal of Political Economy. October 1961a, 69 (5): 484–489. JSTOR 1828538. doi:10.1086/258541 (英语).
Farrell, M. J. The Convexity assumption in the theory of competitive markets: Rejoinder [競爭市場論的凸性假設:再回應]. Journal of Political Economy. October 1961b, 69 (5): 493. JSTOR 1828541. doi:10.1086/258544 (英语).
Bator, Francis M. On convexity, efficiency, and markets: Rejoinder [論凸性、效率、市場:再回應]. Journal of Political Economy. October 1961b, 69 (5): 489. JSTOR 1828539. doi:10.1086/258542 (英语).
Koopmans (1961,第478頁)、Farrell (1959,第390–391頁)、Farrell (1961a,第484頁)、Bator (1961a,第482–483頁)、Rothenberg (1960,第438頁)、Starr (1969,第26頁)評論了Koopmans (1957,第1–126, 尤其 9–16 [1.3 Summation of opportunity sets]、 23–35 [1.6 Convex sets and the price implications of optimality]、 35–37 [1.7 The role of convexity assumptions in the analysis]三節頁):
Koopmans, Tjalling C. Allocation of resources and the price system [資源分配與價格制度]. Koopmans, Tjalling C (编). Three essays on the state of economic science [三篇論經濟科學現況]. New York: McGraw–Hill Book Company. 1957: 1–126. ISBN 0-07-035337-9 (英语).
Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).(Rothenberg, Jerome. Comments on non-convexity [評非凸性]. Journal of Political Economy. October 1961, 69 (5): 490–492. JSTOR 1828540. doi:10.1086/258543 (英语).)
Aumann, Robert J. Markets with a continuum of traders [連續統多個交易人的市場]. Econometrica. January–April 1964, 32 (1–2): 39–50. JSTOR 1913732. MR 0172689. doi:10.2307/1913732 (英语).
Aumann, Robert J. Integrals of set-valued functions [集合值函數的積分]. Journal of Mathematical Analysis and Applications. August 1965, 12 (1): 1–12. MR 0185073. doi:10.1016/0022-247X(65)90049-1
(英语).
Ellickson (1994,第xviii, 306–310, 312, 328–329, 347, and 352頁): Ellickson, Bryan. Competitive equilibrium: Theory and applications [競爭均衡:理論及應用]. Cambridge University Press. 1994. ISBN 978-0-521-31988-1. doi:10.2277/0521319889 (英语).
Starr, Ross M. 8 Convex sets, separation theorems, and non-convex sets in RN (new chapters 22 and 25–26 in (2011) second ed.) [第8章:RN中的凸集、分離定理、非凸集(及2011年第二版新增的第22、25、26諸章)]. General equilibrium theory: An introduction [一般均衡理論:導論] First. Cambridge, UK: Cambridge University Press. 1997: xxiii+250. ISBN 0-521-56473-5. MR 1462618 (英语).Aubin & Ekeland (1976)及Ekeland (1999,第362–364頁)也考慮非凸最小值問題的閉凸包,即對原問題的蓋圖取閉凸包所得的新問題。Di Guglielmo推廣到研究非凸多目標優化問題的擬凸閉包,即對目標函數的下水平集取凸閉包所得的問題:
Di Guglielmo (1977,第287–288頁): Di Guglielmo, F. Nonconvex duality in multiobjective optimization [多目標優化的非凸對偶]. Mathematics of Operations Research. 1977, 2 (3): 285–291. JSTOR 3689518. MR 0484418. doi:10.1287/moor.2.3.285 (英语).
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).
凸集的概念(即該集合包含連接其任意兩點的線段),已經多次成為1964年以前經濟理論的核心。引入積分理論研究經濟競爭後,得以新眼光看待此事:若經濟體的每個參與者,對應商品空間的某個任意集合,而又對一族不重要的參與者取平均,則所得的集合必然為凸。[德布魯附註:「此為A. A. 李亞普諾夫的定理的直接推論,參見Vind (1964)。」] 但⋯⋯諸價格函數⋯⋯可以因平均而產生的凸性解釋。商品空間中,對一族不重要參與者加總可以得到凸性,是經濟理論⋯⋯從積分理論得來的觀察。 [刪節後譯文]
Debreu, Gérard. The Mathematization of economic theory [經濟理論的數學化]. The American Economic Review. March 1991, 81 (Presidential address delivered at the 103rd meeting of the American Economic Association, 29 December 1990, Washington, DC): 1–7. JSTOR 2006785 (英语).
Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Farrell, M. J. On Convexity, efficiency, and markets: A Reply [論凸性、效率、市場:回覆]. Journal of Political Economy. October 1961a, 69 (5): 484–489. JSTOR 1828538. doi:10.1086/258541 (英语).
Farrell, M. J. The Convexity assumption in the theory of competitive markets: Rejoinder [競爭市場論的凸性假設:再回應]. Journal of Political Economy. October 1961b, 69 (5): 493. JSTOR 1828541. doi:10.1086/258544 (英语).
Bator, Francis M. On convexity, efficiency, and markets: Rejoinder [論凸性、效率、市場:再回應]. Journal of Political Economy. October 1961b, 69 (5): 489. JSTOR 1828539. doi:10.1086/258542 (英语).
Koopmans (1961,第478頁)、Farrell (1959,第390–391頁)、Farrell (1961a,第484頁)、Bator (1961a,第482–483頁)、Rothenberg (1960,第438頁)、Starr (1969,第26頁)評論了Koopmans (1957,第1–126, 尤其 9–16 [1.3 Summation of opportunity sets]、 23–35 [1.6 Convex sets and the price implications of optimality]、 35–37 [1.7 The role of convexity assumptions in the analysis]三節頁):
Koopmans, Tjalling C. Allocation of resources and the price system [資源分配與價格制度]. Koopmans, Tjalling C (编). Three essays on the state of economic science [三篇論經濟科學現況]. New York: McGraw–Hill Book Company. 1957: 1–126. ISBN 0-07-035337-9 (英语).
Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).(Rothenberg, Jerome. Comments on non-convexity [評非凸性]. Journal of Political Economy. October 1961, 69 (5): 490–492. JSTOR 1828540. doi:10.1086/258543 (英语).)
Aumann, Robert J. Markets with a continuum of traders [連續統多個交易人的市場]. Econometrica. January–April 1964, 32 (1–2): 39–50. JSTOR 1913732. MR 0172689. doi:10.2307/1913732 (英语).
Aumann, Robert J. Integrals of set-valued functions [集合值函數的積分]. Journal of Mathematical Analysis and Applications. August 1965, 12 (1): 1–12. MR 0185073. doi:10.1016/0022-247X(65)90049-1
(英语).
Aubin & Ekeland (1976)及Ekeland (1999,第362–364頁)也考慮非凸最小值問題的閉凸包,即對原問題的蓋圖取閉凸包所得的新問題。Di Guglielmo推廣到研究非凸多目標優化問題的擬凸閉包,即對目標函數的下水平集取凸閉包所得的問題:
Di Guglielmo (1977,第287–288頁): Di Guglielmo, F. Nonconvex duality in multiobjective optimization [多目標優化的非凸對偶]. Mathematics of Operations Research. 1977, 2 (3): 285–291. JSTOR 3689518. MR 0484418. doi:10.1287/moor.2.3.285 (英语).
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).
凸集的概念(即該集合包含連接其任意兩點的線段),已經多次成為1964年以前經濟理論的核心。引入積分理論研究經濟競爭後,得以新眼光看待此事:若經濟體的每個參與者,對應商品空間的某個任意集合,而又對一族不重要的參與者取平均,則所得的集合必然為凸。[德布魯附註:「此為A. A. 李亞普諾夫的定理的直接推論,參見Vind (1964)。」] 但⋯⋯諸價格函數⋯⋯可以因平均而產生的凸性解釋。商品空間中,對一族不重要參與者加總可以得到凸性,是經濟理論⋯⋯從積分理論得來的觀察。 [刪節後譯文]
Debreu, Gérard. The Mathematization of economic theory [經濟理論的數學化]. The American Economic Review. March 1991, 81 (Presidential address delivered at the 103rd meeting of the American Economic Association, 29 December 1990, Washington, DC): 1–7. JSTOR 2006785 (英语).
|issue=被忽略 (帮助)
勒馬雷沙爾的實驗,日後有下列論文討論:
Aardal (1995,第2–3頁): Aardal, Karen. Optima interview Claude Lemaréchal [Optima訪問克勞德·勒馬雷沙爾] (PDF). Optima: Mathematical Programming Society Newsletter. March 1995, 45: 2–4 [2 February 2011]. (原始内容存档 (PDF)于2021-09-09) (英语).
Hiriart-Urruty & Lemaréchal (1993,第143–145, 151, 153, and 156頁): Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. XII Abstract duality for practitioners [第十二章:實踐用的抽象對偶性]. Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods [凸分析和最小化算法,第二卷:進階理論及束法]. Grundlehren der Mathematischen Wissenschaften [數理科學的基本原理] 306. Berlin: Springer-Verlag. 1993: 136–193 (及pp. 334–335所列的文獻附註). ISBN 3-540-56852-2. MR 1295240 (英语).
Bertsekas, Dimitri P. 5.6 Large scale separable integer programming problems and the exponential method of multipliers [第5.6節:大規模可分整數規劃問題及乘子指數法]. Constrained optimization and Lagrange multiplier methods [受限優化和拉格朗日乘子法] 1982年Academic Press版的重印. Belmont, Mass.: Athena Scientific. 1996: xiii+395. ISBN 1-886529-04-3. MR 0690767 (英语).
Bertsekas (1996,第364–381頁)將拉格朗日對偶法用到發電排程上(即機組排程問題),此種問題有變量限制為整數,所以非凸:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. Optimal short-term scheduling of large-scale power systems [大規模電力系統的最優短期排程] (PDF). IEEE Transactions on Automatic Control. January 1983, 28 (1): 1–11 [2 February 2011]. doi:10.1109/tac.1983.1103136. (原始内容存档 (PDF)于2021-09-09) (英语). Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp. 432–443.
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).Bertsekas, Dimitri P. 5.6 Large scale separable integer programming problems and the exponential method of multipliers [第5.6節:大規模可分整數規劃問題及乘子指數法]. Constrained optimization and Lagrange multiplier methods [受限優化和拉格朗日乘子法] 1982年Academic Press版的重印. Belmont, Mass.: Athena Scientific. 1996: xiii+395. ISBN 1-886529-04-3. MR 0690767 (英语).
Bertsekas (1996,第364–381頁)將拉格朗日對偶法用到發電排程上(即機組排程問題),此種問題有變量限制為整數,所以非凸:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. Optimal short-term scheduling of large-scale power systems [大規模電力系統的最優短期排程] (PDF). IEEE Transactions on Automatic Control. January 1983, 28 (1): 1–11 [2 February 2011]. doi:10.1109/tac.1983.1103136. (原始内容存档 (PDF)于2021-09-09) (英语). Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp. 432–443.
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).|issue=被忽略 (帮助)
勒馬雷沙爾的實驗,日後有下列論文討論:
Aardal (1995,第2–3頁): Aardal, Karen. Optima interview Claude Lemaréchal [Optima訪問克勞德·勒馬雷沙爾] (PDF). Optima: Mathematical Programming Society Newsletter. March 1995, 45: 2–4 [2 February 2011]. (原始内容存档 (PDF)于2021-09-09) (英语).
Hiriart-Urruty & Lemaréchal (1993,第143–145, 151, 153, and 156頁): Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. XII Abstract duality for practitioners [第十二章:實踐用的抽象對偶性]. Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods [凸分析和最小化算法,第二卷:進階理論及束法]. Grundlehren der Mathematischen Wissenschaften [數理科學的基本原理] 306. Berlin: Springer-Verlag. 1993: 136–193 (及pp. 334–335所列的文獻附註). ISBN 3-540-56852-2. MR 1295240 (英语).
Bertsekas, Dimitri P. 5.6 Large scale separable integer programming problems and the exponential method of multipliers [第5.6節:大規模可分整數規劃問題及乘子指數法]. Constrained optimization and Lagrange multiplier methods [受限優化和拉格朗日乘子法] 1982年Academic Press版的重印. Belmont, Mass.: Athena Scientific. 1996: xiii+395. ISBN 1-886529-04-3. MR 0690767 (英语).
Bertsekas (1996,第364–381頁)將拉格朗日對偶法用到發電排程上(即機組排程問題),此種問題有變量限制為整數,所以非凸:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. Optimal short-term scheduling of large-scale power systems [大規模電力系統的最優短期排程] (PDF). IEEE Transactions on Automatic Control. January 1983, 28 (1): 1–11 [2 February 2011]. doi:10.1109/tac.1983.1103136. (原始内容存档 (PDF)于2021-09-09) (英语). Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp. 432–443.
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Aubin & Ekeland (1976)及Ekeland (1999,第362–364頁)也考慮非凸最小值問題的閉凸包,即對原問題的蓋圖取閉凸包所得的新問題。Di Guglielmo推廣到研究非凸多目標優化問題的擬凸閉包,即對目標函數的下水平集取凸閉包所得的問題:
Di Guglielmo (1977,第287–288頁): Di Guglielmo, F. Nonconvex duality in multiobjective optimization [多目標優化的非凸對偶]. Mathematics of Operations Research. 1977, 2 (3): 285–291. JSTOR 3689518. MR 0484418. doi:10.1287/moor.2.3.285 (英语).
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附錄一:凸規劃的先驗估計]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析與變分問題]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362 (英语).
Samuelson, Paul A. The problem of integrability in utility theory [效用論的可積性問題]. Economica. New Series. November 1950, 17 (68): 355–385. JSTOR 2549499. MR 0043436. doi:10.2307/2549499 (英语).會注意到,競爭市場中,不能觀測到無差異曲線凸處(而不是凹)的任何點。此種點被永恆的黑暗遮蔽,除非我等令該消費者壟斷買方,且從非常凸的「預算曲線」上,選取所買的商品。(其沿此曲線,影響所買商品的價格。)在买方垄断的情況,仍可從均衡點觀測到的限制的斜算,推斷該人無差異曲線的斜率。[譯按:此處凸與凹的約定,與本條目相反。]
「永恆的黑暗」描述彌爾頓所著《失樂園》中的地獄,其卷二第592至594行將地獄的凹陷與塞波尼斯大沼澤相比:
彌爾頓對凹陷的描寫,是Arrow & Hahn (1980,第169頁)第7章"Markets with non-convex preferences and production"[非凸偏好與生產的市場]的題辭。該章講解Starr (1969)的成果。 Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般競爭分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057 (英语). Starr, Ross M. Quasi-equilibria in markets with non-convex preferences (Appendix 2: The Shapley–Folkman theorem, pp. 35–37) [有非凸偏好的市場的準均衡(附錄2:沙普利-福克曼定理,pp. 35–37)]. Econometrica. 1969, 37 (1): 25–38. JSTOR 1909201. doi:10.2307/1909201 (英语).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.