约翰内斯·开普勒 (Chinese Wikipedia)

Analysis of information sources in references of the Wikipedia article "约翰内斯·开普勒" in Chinese language version.

refsWebsite
Global rank Chinese rank
1st place
1st place
low place
low place
18th place
57th place
5th place
12th place
2nd place
23rd place
3rd place
8th place
low place
low place
26th place
113th place
low place
low place
low place
low place
low place
9,598th place
low place
low place
2,779th place
6,124th place

austrian-mint.at

books.google.com

  • By 1621 or earlier, Kepler recognized that Jupiter's moons obey his third law.
    Kepler contended that rotating massive bodies communicate their rotation to their satellites, so that the satellites are swept around the central body; thus the rotation of the Sun drives the revolutions of the planets and the rotation of the Earth drives the revolution of the Moon. In Kepler's era, no one had any evidence of Jupiter's rotation. However, Kepler argued that the force by which a central body causes its satellites to revolve around it, weakens with distance; consequently, satellites that are farther from the central body revolve slower. Kepler noted that Jupiter's moons obeyed this pattern and he inferred that a similar force was responsible. He also noted that the orbital periods and semi-major axes of Jupiter's satellites were roughly related by a 3/2 power law, as are the orbits of the six (then known) planets. However, this relation was approximate: the periods of Jupiter's moons were known within a few percent of their modern values, but the moons’ semi-major axes were determined less accurately.

    Kepler discussed Jupiter's moons in his Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy](Linz ("Lentiis ad Danubium"),(Austria): Johann Planck, 1622), book 4, part 2, page 554页面存档备份,存于互联网档案馆).(For a more modern and legible edition, see: Christian Frisch, ed., Joannis Kepleri Astronomi Opera Omnia, vol. 6 (Frankfurt-am-Main, (Germany): Heyder & Zimmer, 1866), page 361页面存档备份,存于互联网档案馆).)

    Original : 4) Confirmatur vero fides hujus rei comparatione quatuor Jovialium et Jovis cum sex planetis et Sole. Etsi enim de corpore Jovis, an et ipsum circa suum axem convertatur, non ea documenta habemus, quae nobis suppetunt in corporibus Terrae et praecipue Solis, quippe a sensu ipso: at illud sensus testatur, plane ut est cum sex planetis circa Solem, sic etiam se rem habere cum quatuor Jovialibus, ut circa corpus Jovis quilibet, quo longius ab illo potest excurrere, hoc tardius redeat, et id quidem proportione non eadem, sed majore, hoc est sescupla proportionis intervallorum cujusque a Jove: quae plane ipsissima est, qua utebantur supra sex planetae. Intervalla enim quatuor Jovialium a Jove prodit Marius in suo Mundo Joviali ista: 3, 5, 8, 13 (vel 14 Galilaeo)…Periodica vero tempora prodit idem Marius ista: dies 1. h. 18 1/2, dies 3 h. 13 1/3, dies 7 h. 3, dies 16 h. 18: ubique proportio est major quam dupla, major igitur quam intervallorum 3, 5, 8, 13 vel 14, minor tamen quam quadratorum, qui duplicant proportiones intervallorum, sc. 9, 25, 64, 169 vel 196, sicut etiam sescupla sunt majora simplis, minora vero duplis.

    Translation :(4)However, the credibility of this [argument] is proved by the comparison of the four [moons] of Jupiter and Jupiter with the six planets and the Sun. Because, regarding the body of Jupiter, whether it turns around its axis, we don't have proofs for what suffices for us [regarding the rotation of ] the body of the Earth and especially of the Sun, certainly [as reason proves to us]: but reason attests that, just as it is clearly [true] among the six planets around the Sun, so also it is among the four [moons] of Jupiter, because around the body of Jupiter any [satellite] that can go farther from it orbits slower, and even that [orbit's period] is not in the same proportion, but greater [than the distance from Jupiter]; that is, 3/2(sescupla)of the proportion of each of the distances from Jupiter, which is clearly the very [proportion] as [is used for] the six planets above. In his [book] The World of Jupiter [Mundus Jovialis, 1614], [Simon] Mayr [1573-1624] presents these distances, from Jupiter, of the four [moons] of Jupiter: 3, 5, 8, 13(or 14 [according to] Galileo)… Mayr presents their time periods: 1 day 18 1/2 hours, 3 days 13 1/3 hours, 7 days 3 hours, 16 days 18 hours: for all [of these data] the proportion is greater than double, thus greater than [the proportion] of the distances 3, 5, 8, 13 or 14, although less than [the proportion] of the squares, which double the proportions of the distances, namely 9, 25, 64, 169 or 196, just as [a power of] 3/2 is also greater than 1 but less than 2.

  • Arthur I. Miller英语Arthur I. Miller. Deciphering the cosmic number: the strange friendship of Wolfgang Pauli and Carl Jung. W. W. Norton & Company. March 24, 2009: 80 [March 7, 2011]. ISBN 978-0-393-06532-9. (原始内容存档于2015-05-04). 

dailytech.com

doi.org

harvard.edu

ui.adsabs.harvard.edu

adsabs.harvard.edu

jstor.org

  • Ferguson, Thomas S., Who solved the secretary problem ?, Statistical Science, 1989, 4 (3): 282–289 [2014-10-30], doi:10.1214/ss/1177012493, (原始内容存档于2021-04-18), When the celebrated German astronomer, Johannes Kepler (1571-1630), lost his first wife to cholera in 1611, he set about finding a new wife using the same methodical thoroughness and careful consideration of the data that he used in finding the orbit of Mars to be an ellipse... The process consumed much of his attention and energy for nearly 2 years... 

knol.google.com

rl.ac.uk

nao.rl.ac.uk

rug.nl

satucket.com

web.archive.org

  • Using Tycho's data, see 'Two views of a system' 互联网档案馆存檔,存档日期2011-07-21.
  • Ferguson, Thomas S., Who solved the secretary problem ?, Statistical Science, 1989, 4 (3): 282–289 [2014-10-30], doi:10.1214/ss/1177012493, (原始内容存档于2021-04-18), When the celebrated German astronomer, Johannes Kepler (1571-1630), lost his first wife to cholera in 1611, he set about finding a new wife using the same methodical thoroughness and careful consideration of the data that he used in finding the orbit of Mars to be an ellipse... The process consumed much of his attention and energy for nearly 2 years... 
  • By 1621 or earlier, Kepler recognized that Jupiter's moons obey his third law.
    Kepler contended that rotating massive bodies communicate their rotation to their satellites, so that the satellites are swept around the central body; thus the rotation of the Sun drives the revolutions of the planets and the rotation of the Earth drives the revolution of the Moon. In Kepler's era, no one had any evidence of Jupiter's rotation. However, Kepler argued that the force by which a central body causes its satellites to revolve around it, weakens with distance; consequently, satellites that are farther from the central body revolve slower. Kepler noted that Jupiter's moons obeyed this pattern and he inferred that a similar force was responsible. He also noted that the orbital periods and semi-major axes of Jupiter's satellites were roughly related by a 3/2 power law, as are the orbits of the six (then known) planets. However, this relation was approximate: the periods of Jupiter's moons were known within a few percent of their modern values, but the moons’ semi-major axes were determined less accurately.

    Kepler discussed Jupiter's moons in his Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy](Linz ("Lentiis ad Danubium"),(Austria): Johann Planck, 1622), book 4, part 2, page 554页面存档备份,存于互联网档案馆).(For a more modern and legible edition, see: Christian Frisch, ed., Joannis Kepleri Astronomi Opera Omnia, vol. 6 (Frankfurt-am-Main, (Germany): Heyder & Zimmer, 1866), page 361页面存档备份,存于互联网档案馆).)

    Original : 4) Confirmatur vero fides hujus rei comparatione quatuor Jovialium et Jovis cum sex planetis et Sole. Etsi enim de corpore Jovis, an et ipsum circa suum axem convertatur, non ea documenta habemus, quae nobis suppetunt in corporibus Terrae et praecipue Solis, quippe a sensu ipso: at illud sensus testatur, plane ut est cum sex planetis circa Solem, sic etiam se rem habere cum quatuor Jovialibus, ut circa corpus Jovis quilibet, quo longius ab illo potest excurrere, hoc tardius redeat, et id quidem proportione non eadem, sed majore, hoc est sescupla proportionis intervallorum cujusque a Jove: quae plane ipsissima est, qua utebantur supra sex planetae. Intervalla enim quatuor Jovialium a Jove prodit Marius in suo Mundo Joviali ista: 3, 5, 8, 13 (vel 14 Galilaeo)…Periodica vero tempora prodit idem Marius ista: dies 1. h. 18 1/2, dies 3 h. 13 1/3, dies 7 h. 3, dies 16 h. 18: ubique proportio est major quam dupla, major igitur quam intervallorum 3, 5, 8, 13 vel 14, minor tamen quam quadratorum, qui duplicant proportiones intervallorum, sc. 9, 25, 64, 169 vel 196, sicut etiam sescupla sunt majora simplis, minora vero duplis.

    Translation :(4)However, the credibility of this [argument] is proved by the comparison of the four [moons] of Jupiter and Jupiter with the six planets and the Sun. Because, regarding the body of Jupiter, whether it turns around its axis, we don't have proofs for what suffices for us [regarding the rotation of ] the body of the Earth and especially of the Sun, certainly [as reason proves to us]: but reason attests that, just as it is clearly [true] among the six planets around the Sun, so also it is among the four [moons] of Jupiter, because around the body of Jupiter any [satellite] that can go farther from it orbits slower, and even that [orbit's period] is not in the same proportion, but greater [than the distance from Jupiter]; that is, 3/2(sescupla)of the proportion of each of the distances from Jupiter, which is clearly the very [proportion] as [is used for] the six planets above. In his [book] The World of Jupiter [Mundus Jovialis, 1614], [Simon] Mayr [1573-1624] presents these distances, from Jupiter, of the four [moons] of Jupiter: 3, 5, 8, 13(or 14 [according to] Galileo)… Mayr presents their time periods: 1 day 18 1/2 hours, 3 days 13 1/3 hours, 7 days 3 hours, 16 days 18 hours: for all [of these data] the proportion is greater than double, thus greater than [the proportion] of the distances 3, 5, 8, 13 or 14, although less than [the proportion] of the squares, which double the proportions of the distances, namely 9, 25, 64, 169 or 196, just as [a power of] 3/2 is also greater than 1 but less than 2.

  • Arthur I. Miller英语Arthur I. Miller. Deciphering the cosmic number: the strange friendship of Wolfgang Pauli and Carl Jung. W. W. Norton & Company. March 24, 2009: 80 [March 7, 2011]. ISBN 978-0-393-06532-9. (原始内容存档于2015-05-04). 
  • Applebaum, Wilbur. Keplerian Astronomy after Kepler: Researches and Problems. History of Science. 1996-12-01, 34 [2022-10-05]. (原始内容存档于2022-10-05). 
  • Albert van Helden, "The Importance of the Transit of Mercury of 1631,"页面存档备份,存于互联网档案馆Journal for the History of Astronomy, 7 (1976): 1–10.
  • HM Nautical Almanac Office. 1631 Transit of Venus. June 10, 2004 [August 28, 2006]. (原始内容存档于2006年10月1日). 
  • Chapman, A. Jeremiah Horrocks, The Transit of Venus, and the 'New Astronomy' in Early Seventeenth-Century England. Quarterly Journal of the Royal Astronomical Society. 1990-09-01, 31 [2022-10-05]. ISSN 0035-8738. (原始内容存档于2022-10-05). 
  • Applebaum, W.; Hatch, R. A. Boulliau Mercator and Horrocks Venus in Sole Visa - Three Unpublished Letters. Journal for the History of Astronomy. 1983-01-01, 14 [2022-10-05]. ISSN 0021-8286. doi:10.1177/002182868301400302. (原始内容存档于2022-10-05). 
  • Eggenberg Palace coin. Austrian Mint. [September 9, 2009]. (原始内容存档于2011年5月31日). 
  • Ng, Jansen. Kepler Mission Sets Out to Find Planets Using CCD Cameras. DailyTech. July 3, 2009 [July 3, 2009]. (原始内容存档于2009年3月10日). 
  • Calendar of the Church Year according to the Episcopal Church. Charles Wohlers. [October 17, 2014]. (原始内容存档于2000-08-23). 

wikipedia.org

en.wikipedia.org

worldcat.org