Schlichting, CD. The Evolution of Phenotypic Plasticity in Plants. Annual Review of Ecology and Systematics. 1986, 17: 667–93. doi:10.1146/annurev.es.17.110186.003315.
Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology. 2006, 20 (2): 207–16. JSTOR 3806552. doi:10.1111/j.1365-2435.2006.01105.x.
Tallman, Gary; Zhu, Jianxin; Mawson, Bruce T.; Amodeo, Gabriella; Nouhi, Zepedeh; Levy, Kathleen; Zeiger, Eduardo. Induction of CAM in Mesembryanthemum crystallinum Abolishes the Stomatal Response to Blue Light and Light-Dependent Zeaxanthin Formation in Guard Cell Chloroplasts. Plant and Cell Physiology. 1997, 38 (3): 236–42. doi:10.1093/oxfordjournals.pcp.a029158.
Weaver ME, Ingram DL. Morphological Changes in Swine Associated with Environmental Temperature. Ecology. 1969, 50 (4): 710–3. JSTOR 1936264. doi:10.2307/1936264.
Meaney, Michael J.; Szyf, Moshe; Dymov, Sergiy; Seckl, Jonathan R.; Sharma, Shakti; D'Alessio, Ana C.; Champagne, Frances A.; Cervoni, Nadia; Weaver, Ian C. G. Epigenetic programming by maternal behavior. Nature Neuroscience. 2004-08, 7 (8): 847–854 [2019-04-30]. ISSN 1546-1726. doi:10.1038/nn1276. (原始内容存档于2021-05-07) (英语).
Brzek P, Kohl K, Caviedes-Vidal E, Karasov WH. Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. The Journal of Experimental Biology. May 2009, 212 (Pt 9): 1284–93. PMID 19376949. doi:10.1242/jeb.023911.
Cortés PA, Franco M, Sabat P, Quijano SA, Nespolo RF. Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. October 2011, 160 (2): 117–24. PMID 21627996. doi:10.1016/j.cbpa.2011.05.014.
Liu QS, Wang DH. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). Journal of Comparative Physiology B. July 2007, 177 (5): 509–18. PMID 17333208. doi:10.1007/s00360-007-0149-4.
Naya DE, Ebensperger LA, Sabat P, Bozinovic F. Digestive and metabolic flexibility allows female degus to cope with lactation costs. Physiological and Biochemical Zoology. 2008, 81 (2): 186–94. PMID 18190284. doi:10.1086/527453.
Krockenberger AK, Hume ID. A flexible digestive strategy accommodates the nutritional demands of reproduction in a free-living folivore, the Koala (Phascolarctos cinereus). Functional Ecology. 2007, 21 (4): 748–756. doi:10.1111/j.1365-2435.2007.01279.x.
Hammond KA, Wunder BA. The Role of Diet Quality and Energy Need in the Nutritional Ecology of a Small Herbivore, Microtus ochrogaster. Physiological Zoology. 1991, 64 (2): 541–67. JSTOR 30158190. doi:10.1086/physzool.64.2.30158190.
Brzek P, Kohl K, Caviedes-Vidal E, Karasov WH. Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. The Journal of Experimental Biology. May 2009, 212 (Pt 9): 1284–93. PMID 19376949. doi:10.1242/jeb.023911.
Cortés PA, Franco M, Sabat P, Quijano SA, Nespolo RF. Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. October 2011, 160 (2): 117–24. PMID 21627996. doi:10.1016/j.cbpa.2011.05.014.
Sabat P, Riveros JM, López-Pinto C. Phenotypic flexibility in the intestinal enzymes of the African clawed frog Xenopus laevis. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. January 2005, 140 (1): 135–9. PMID 15664322. doi:10.1016/j.cbpb.2004.11.010.
Ahmed AM, Baggott SL, Maingon R, Hurd H. The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos. 2002, 97 (3): 371–377. doi:10.1034/j.1600-0706.2002.970307.x.
Schallig HD, Hordijk PL, Oosthoek PW, Jong-Brink M. Schistosomin, a peptide present in the haemolymph of Lymnaea stagnal is infected with Trichobilharzia ocellata, is produced only in the snail's central nervous system. Parasitology Research. 1991, 77 (2): 152–6. doi:10.1007/BF00935429.
Kristan DM, Hammond KA. Physiological and morphological responses to simultaneous cold exposure and parasite infection by wild-derived house mice. Functional Ecology. 2003, 17 (4): 464–471. JSTOR 3598983. doi:10.1046/j.1365-2435.2003.00751.x.
Huffman MA. Self-Medicative Behavior in the African Great Apes: An Evolutionary Perspective into the Origins of Human Traditional Medicine. BioScience. 2001, 51 (8): 651–61. doi:10.1641/0006-3568(2001)051[0651:SMBITA]2.0.CO;2.
Garland T, Kelly SA. Phenotypic plasticity and experimental evolution. Journal of Experimental Biology. 2006, 209 (12): 2344–2361. PMID 16731811. doi:10.1242/jeb.02244.
The genetics of phenotypic plasticity. V. Evolution of reaction norm shape. Journal of Evolutionary Biology. 1993, 6: 31–48. doi:10.1046/j.1420-9101.1993.6010031.x.
Janzen, Daniel H. Why Mountain Passes are Higher in the Tropics. The American Naturalist. 1967, 101 (919): 233–49. doi:10.1086/282487.
Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. The American Naturalist. October 2008, 172 (4): E122–34. JSTOR 590957. PMID 18717635. doi:10.1086/590957.
Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?. The American Naturalist. October 2011,. 178 Suppl 1: S80–96. PMID 21956094. doi:10.1086/661780.
Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology. 2006, 20 (2): 207–16. JSTOR 3806552. doi:10.1111/j.1365-2435.2006.01105.x.
Weaver ME, Ingram DL. Morphological Changes in Swine Associated with Environmental Temperature. Ecology. 1969, 50 (4): 710–3. JSTOR 1936264. doi:10.2307/1936264.
Hammond KA, Wunder BA. The Role of Diet Quality and Energy Need in the Nutritional Ecology of a Small Herbivore, Microtus ochrogaster. Physiological Zoology. 1991, 64 (2): 541–67. JSTOR 30158190. doi:10.1086/physzool.64.2.30158190.
Kristan DM, Hammond KA. Physiological and morphological responses to simultaneous cold exposure and parasite infection by wild-derived house mice. Functional Ecology. 2003, 17 (4): 464–471. JSTOR 3598983. doi:10.1046/j.1365-2435.2003.00751.x.
Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. The American Naturalist. October 2008, 172 (4): E122–34. JSTOR 590957. PMID 18717635. doi:10.1086/590957.
Brzek P, Kohl K, Caviedes-Vidal E, Karasov WH. Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. The Journal of Experimental Biology. May 2009, 212 (Pt 9): 1284–93. PMID 19376949. doi:10.1242/jeb.023911.
Cortés PA, Franco M, Sabat P, Quijano SA, Nespolo RF. Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. October 2011, 160 (2): 117–24. PMID 21627996. doi:10.1016/j.cbpa.2011.05.014.
Liu QS, Wang DH. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). Journal of Comparative Physiology B. July 2007, 177 (5): 509–18. PMID 17333208. doi:10.1007/s00360-007-0149-4.
Naya DE, Ebensperger LA, Sabat P, Bozinovic F. Digestive and metabolic flexibility allows female degus to cope with lactation costs. Physiological and Biochemical Zoology. 2008, 81 (2): 186–94. PMID 18190284. doi:10.1086/527453.
Brzek P, Kohl K, Caviedes-Vidal E, Karasov WH. Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. The Journal of Experimental Biology. May 2009, 212 (Pt 9): 1284–93. PMID 19376949. doi:10.1242/jeb.023911.
Cortés PA, Franco M, Sabat P, Quijano SA, Nespolo RF. Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. October 2011, 160 (2): 117–24. PMID 21627996. doi:10.1016/j.cbpa.2011.05.014.
Sabat P, Riveros JM, López-Pinto C. Phenotypic flexibility in the intestinal enzymes of the African clawed frog Xenopus laevis. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. January 2005, 140 (1): 135–9. PMID 15664322. doi:10.1016/j.cbpb.2004.11.010.
Garland T, Kelly SA. Phenotypic plasticity and experimental evolution. Journal of Experimental Biology. 2006, 209 (12): 2344–2361. PMID 16731811. doi:10.1242/jeb.02244.
Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. The American Naturalist. October 2008, 172 (4): E122–34. JSTOR 590957. PMID 18717635. doi:10.1086/590957.
Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?. The American Naturalist. October 2011,. 178 Suppl 1: S80–96. PMID 21956094. doi:10.1086/661780.