Qeyri-qabarıqlılıq (iqtisadiyyat) (Azerbaijani Wikipedia)

Analysis of information sources in references of the Wikipedia article "Qeyri-qabarıqlılıq (iqtisadiyyat)" in Azerbaijani language version.

refsWebsite
Global rank Azerbaijani rank
2nd place
9th place
451st place
1,179th place
6th place
15th place
26th place
101st place
1st place
1st place
11th place
712th place
3rd place
12th place
low place
low place
7,008th place
1,602nd place
27th place
122nd place
1,923rd place
low place
low place
low place
916th place
4,126th place
low place
low place
488th place
1,314th place

ams.org

archive.org

books.google.com

columbia.edu

www2.gsb.columbia.edu

dictionaryofeconomics.com

doi.org

e-elgar.com

jstor.org

semanticscholar.org

upf.edu

econ.upf.edu

  • Mas-Colell, A. Non-convexity (PDF) // Eatwell, John; Milgate, Murray; Newman, Peter (redaktorlar ). The New Palgrave: A Dictionary of Economics (first). Palgrave Macmillan. 1987. 653–661. doi:10.1057/9780230226203.3173. ISBN 9780333786765. 2018-08-09 tarixində arxivləşdirilib (PDF). İstifadə tarixi: 2020-10-12.

utdallas.edu

utexas.edu

eco.utexas.edu

web.archive.org

  • Mas-Colell, A. Non-convexity (PDF) // Eatwell, John; Milgate, Murray; Newman, Peter (redaktorlar ). The New Palgrave: A Dictionary of Economics (first). Palgrave Macmillan. 1987. 653–661. doi:10.1057/9780230226203.3173. ISBN 9780333786765. 2018-08-09 tarixində arxivləşdirilib (PDF). İstifadə tarixi: 2020-10-12.
  • Khan, M. Ali. Perfect competition // Durlauf, Steven N.; Blume, Lawrence E., ed. (redaktorlar ). The New Palgrave Dictionary of Economics (Second). Palgrave Macmillan. 2008. 354–365. doi:10.1057/9780230226203.1267. ISBN 978-0-333-78676-5. 2017-09-14 tarixində arxivləşdirilib. İstifadə tarixi: 2020-10-12.
  • Pages 63–65: Laffont, Jean-Jacques. 3 Nonconvexities // Fondements de L'economie Publique [Fundamentals of public economics]. MIT. 1988. ISBN 0-262-12127-1. 2020-08-06 tarixində arxivləşdirilib. İstifadə tarixi: 2020-10-12.
  • Hotelling, Harold. "The Economics of Exhaustible Resources". JPE. 39 (2). 1931: 137–175. doi:10.1086/254195. JSTOR 1822328. 2023-07-15 tarixində arxivləşdirilib. İstifadə tarixi: 2020-10-12.
  • Adda, Jerome; Cooper, Russell, Dynamic Economics, MIT Press, 2003, 2008-12-05 tarixində orijinalından arxivləşdirilib, İstifadə tarixi: 2020-10-12
  • Sethi, S. P.; Thompson, G. L. Optimal Control Theory: Applications to Management Science and Economics (2nd). Berlin: Springer. 2000. ISBN 0-387-28092-8. Slides are available at http://www.utdallas.edu/~sethi/OPRE7320presentation.html Arxivləşdirilib 2017-08-12 at the Wayback Machine
  • Heal, (1999. səh. 4 in preprint): Heal, G. M. Introduction (PDF) // The economics of increasing returns. The International Library of Critical Writings in Economics. Edward Elgar. 1999. 640. ISBN 978-1-85898-160-4. 15 September 2015 tarixində orijinalından (PDF) arxivləşdirilib. İstifadə tarixi: 5 March 2011.
  • Algebraic topology has also been used to study convex and non-convex sets in economics:Chichilnisky, G. "Intersecting families of sets and the topology of cones in economics" (PDF). Bulletin of the American Mathematical Society. New Series. 29 (2). 1993. 189–207. doi:10.1090/S0273-0979-1993-00439-7. MR 1218037. 2022-01-23 tarixində arxivləşdirilib (PDF). İstifadə tarixi: 2020-10-12.

wikisource.org

az.wikisource.org

  • Samuelson, (1950. səh. 359–360):

    It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.

    Samuelson, Paul A. "The problem of integrability in utility theory". Economica. New Series. 17. 1950. 355–385. doi:10.2307/2549499. JSTOR 2549499. MR 0043436.For the epigraph to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr, (1969), Arrow, Hahn, (1971. səh. 169) quote John Milton's description of the (non-convex) Serbonian Bog in Paradise Lost (Book II, lines 592–594):

    A gulf profound as that Serbonian Bog

    Betwixt Damiata and Mount Casius old,

    Where Armies whole have sunk.

zbmath.org