Skleníkové plyny (Czech Wikipedia)

Analysis of information sources in references of the Wikipedia article "Skleníkové plyny" in Czech language version.

refsWebsite
Global rank Czech rank
1st place
1st place
2nd place
4th place
5th place
3rd place
882nd place
880th place
75th place
115th place
222nd place
83rd place
5,534th place
3,610th place
212th place
245th place
low place
7,795th place
1,778th place
1,856th place
1,160th place
346th place
2,532nd place
2,273rd place
low place
3,565th place
1,248th place
807th place
4th place
8th place
4,162nd place
3,196th place
low place
4,586th place
low place
low place
6,140th place
900th place
652nd place
664th place
6th place
10th place
12th place
39th place
20th place
48th place
7th place
43rd place
3,867th place
1,555th place
3rd place
25th place
low place
529th place
1,725th place
559th place
low place
low place
low place
low place
234th place
72nd place
1,293rd place
205th place
3,034th place
1,853rd place
18th place
99th place
415th place
684th place
1,896th place
3,021st place
6,903rd place
4,966th place
231st place
91st place
2,263rd place
2,302nd place
1,283rd place
26th place
2,290th place
2,538th place

acs.org

pubs.acs.org

  • Global Warming and Anthropogenic Emissions of Water Vapor. pubs.acs.org [online]. [cit. 2024-10-28]. Dostupné online. 
  • Global Warming and Anthropogenic Emissions of Water Vapor. pubs.acs.org [online]. [cit. 2024-10-28]. Dostupné online. 

ametsoc.org

journals.ametsoc.org

annualreviews.org

archive.org

bbc.com

  • Climate change: 'Monumental' deal to cut HFCs, fastest growing greenhouse gases. BBC News. 2016-10-15. Dostupné online [cit. 2023-10-29]. (anglicky) 

books.google.com

carbonbrief.org

  • HAUSFATHER, Zeke. Analysis: When might the world exceed 1.5C and 2C of global warming?. Carbon Brief [online]. 2020-12-04 [cit. 2023-10-29]. Dostupné online. (anglicky) 

climate.gov

  • Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov. www.climate.gov [online]. [cit. 2023-10-29]. Dostupné online. (us) 
  • Climate Change: Annual greenhouse gas index | NOAA Climate.gov. www.climate.gov [online]. [cit. 2023-11-11]. Dostupné online. (us) 

doi.org

dx.doi.org

  • KARL, Thomas R.; TRENBERTH, Kevin E. Modern Global Climate Change. Science. 2003-12-05, roč. 302, čís. 5651, s. 1719–1723. Dostupné online [cit. 2023-10-29]. ISSN 0036-8075. DOI 10.1126/science.1090228. (anglicky) 
  • WEI, Peng-Sheng; HSIEH, Yin-Chih; CHIU, Hsuan-Han. Absorption coefficient of carbon dioxide across atmospheric troposphere layer. Heliyon. 2018-10, roč. 4, čís. 10, s. e00785. Dostupné online [cit. 2023-10-29]. ISSN 2405-8440. DOI 10.1016/j.heliyon.2018.e00785. PMID 30302408. 
  • HÖPFNER, M.; MILZ, M.; BUEHLER, S. The natural greenhouse effect of atmospheric oxygen (O 2 ) and nitrogen (N 2 ): NATURAL GREENHOUSE EFFECT OF O 2 and N 2. Geophysical Research Letters. 2012-05-28, roč. 39, čís. 10, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2012GL051409. (anglicky) 
  • HELD, Isaac M.; SODEN, Brian J. Water Vapor Feedback and Global Warming. Annual Review of Energy and the Environment. 2000-11, roč. 25, čís. 1, s. 441–475. Dostupné online [cit. 2019-12-30]. ISSN 1056-3466. DOI 10.1146/annurev.energy.25.1.441. (anglicky)  Archivováno 17. 6. 2021 na Wayback Machine.
  • MANABE, Syukuro; STRICKLER, Robert F. Thermal Equilibrium of the Atmosphere with a Convective Adjustment. Journal of the Atmospheric Sciences. 1964-07-01, roč. 21, čís. 4, s. 361–385. Dostupné online [cit. 2023-10-29]. ISSN 0022-4928. DOI 10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2. (EN) 
  • SCHMIDT, Gavin A.; RUEDY, Reto A.; MILLER, Ron L. Attribution of the present-day total greenhouse effect. Journal of Geophysical Research. 2010-10-16, roč. 115, čís. D20. Dostupné online [cit. 2023-10-29]. ISSN 0148-0227. DOI 10.1029/2010JD014287. (anglicky) 
  • KIEHL, J. T.; TRENBERTH, Kevin E. Earth's Annual Global Mean Energy Budget. Bulletin of the American Meteorological Society. 1997-02-01, roč. 78, čís. 2, s. 197–208. Dostupné online [cit. 2023-10-29]. ISSN 0003-0007. DOI 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. (anglicky) 
  • ISAKSEN, Ivar S. A.; GAUSS, Michael; MYHRE, Gunnar. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions: ARCTIC METHANE FEEDBACK. Global Biogeochemical Cycles. 2011-06, roč. 25, čís. 2, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2010GB003845. (anglicky) 
  • SHINDELL, Drew T.; FALUVEGI, Greg; BELL, Nadine. An emissions-based view of climate forcing by methane and tropospheric ozone: EMISSIONS-BASED CLIMATE FORCING. Geophysical Research Letters. 2005-02, roč. 32, čís. 4, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2004GL021900. (anglicky) 
  • EDWARDS, Morgan R.; TRANCIK, Jessika E. Climate impacts of energy technologies depend on emissions timing. Nature Climate Change. 2014-05, roč. 4, čís. 5, s. 347–352. Dostupné online [cit. 2023-11-11]. ISSN 1758-6798. DOI 10.1038/nclimate2204. (anglicky) 
  • CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN 0027-8424. DOI 10.1073/pnas.0702737104. PMID 17962418. (anglicky) 
  • BLASING,, T.J. Recent Greenhouse Gas Concentrations. [s.l.]: [s.n.] Dostupné online. DOI 10.3334/cdiac/atg.032. (anglicky) Type: dataset DOI: 10.3334/CDIAC/atg.032. 
  • NOLAN, Connor; OVERPECK, Jonathan T.; ALLEN, Judy R. M.; ANDERSON, Patricia M.; BETANCOURT, Julio L.; BINNEY, Heather A.; BREWER, Simon. Past and future global transformation of terrestrial ecosystems under climate change. S. 920–923. Science [online]. 2018-08-31. Roč. 361, čís. 6405, s. 920–923. Dostupné online. DOI 10.1126/science.aan5360. (anglicky) 

doi.org

eia.gov

  • Nuclear Power and the Environment - Energy Explained, Your Guide To Understanding Energy - Energy Information Administration. www.eia.gov [online]. [cit. 2019-04-16]. Dostupné online. 

epa.gov

  • Global Greenhouse Gas Emissions Data. www.epa.gov [online]. US EPA [cit. 2023-10-29]. Dostupné online. 
  • Climate Change Indicators: Greenhouse Gases. www.epa.gov [online]. US EPA [cit. 2023-10-29]. Životnost oxidu uhličitého nelze vyjádřit jedinou hodnotou, protože tento plyn se v průběhu času neničí, ale pohybuje se mezi různými částmi systému oceán-atmosféra-země. Část přebytečného oxidu uhličitého je rychle pohlcena (například povrchem oceánů), ale část zůstane v atmosféře po tisíce let, což je částečně způsobeno velmi pomalým procesem, při kterém se uhlík přenáší do oceánských sedimentů.. Dostupné online. 
  • Global Greenhouse Gas Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA. web.archive.org [online]. 2019-12-05 [cit. 2023-10-29]. Spalování uhlí, zemního plynu a ropy pro výrobu elektřiny a tepla je největším zdrojem celosvětových emisí skleníkových plynů.. Dostupné v archivu pořízeném z originálu dne 2019-12-05. 
  • Atmospheric Concentrations of Greenhouse Gases [online]. US EPA [cit. 2023-10-29]. Dostupné online. 
  • US EPA, OAR. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010. US EPA [online]. 2016-02-05 [cit. 2019-12-30]. Dostupné online. (anglicky) 
  • Climate Change Indicators: Greenhouse Gases. www.epa.gov [online]. US EPA [cit. 2023-11-11]. Dostupné online. 
  • Climate Change Indicators: Climate Forcing. www.epa.gov [online]. US EPA [cit. 2023-11-11]. Dostupné online. 

eso.org

  • AGU Web Site: Water Vapor in the Climate System. A Special Report.. www.eso.org [online]. [cit. 2023-11-11]. Dostupné online. 

globalchange.gov

  • Annual Greenhouse Gas Index | GlobalChange.gov. www.globalchange.gov [online]. [cit. 2023-11-11]. Dostupné online. (anglicky) 

grida.no

  • Ehhalt, D. Atmospheric Chemistry and Greenhouse Gases. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 3 January 2013. Kapitola Table 4.1. , in Šablona:Harvp. Referred to by: Šablona:Harvp. Based on Šablona:Harvp: Pre-1750 concentrations of CH4,N2O and current concentrations of O3, are taken from Table 4.1 (a) of the IPCC Intergovernmental Panel on Climate Change, 2001. Following the convention of IPCC (2001), inferred global-scale trace-gas concentrations from prior to 1750 are assumed to be practically uninfluenced by human activities such as increasingly specialized agriculture, land clearing, and combustion of fossil fuels. Preindustrial concentrations of industrially manufactured compounds are given as zero. The short atmospheric lifetime of ozone (hours-days) together with the spatial variability of its sources precludes a globally or vertically homogeneous distribution, so that a fractional unit such as parts per billion would not apply over a range of altitudes or geographical locations. Therefore a different unit is used to integrate the varying concentrations of ozone in the vertical dimension over a unit area, and the results can then be averaged globally. This unit is called a Dobson Unit (D.U.), after G.M.B. Dobson, one of the first investigators of atmospheric ozone. A Dobson unit is the amount of ozone in a column that, unmixed with the rest of the atmosphere, would be 10 micrometers thick at standard temperature and pressure.

harvard.edu

www-as.harvard.edu

  • JACOB, Daniel. Introduction to Atmospheric Chemistry. S. 25–26. www-as.harvard.edu [online]. 2011-09-02 [cit. 2023-11-11]. S. 25–26. Dostupné v archivu pořízeném z originálu dne 2011-09-02. 

iea.org

  • Understanding methane emissions – Global Methane Tracker 2023 – Analysis. IEA [online]. [cit. 2023-10-29]. Dostupné online. (anglicky) 
  • Global Methane Tracker 2023 – Analysis. IEA [online]. [cit. 2023-10-29]. Dostupné online. (anglicky) 

ieee.org

ieeexplore.ieee.org

  • Earth's Outgoing Radiation Monitoring From the Moon. ieeexplore.ieee.org [online]. [cit. 2024-10-27]. Dostupné online. 

iop.org

iopscience.iop.org

  • How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations?. iopscience.iop.org [online]. [cit. 2024-10-28]. Dostupné online. 

ipcc.ch

  • Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 12 October 2012. Kapitola Table 2.1. , in Šablona:Harvp. Referred to by: Šablona:Harvp
  • The pre-1750 value for N2O is consistent with ice-core records from 10,000 BCE through 1750 CE: Figure SPM.1. [s.l.]: IPCC Kapitola Summary for policymakers. , in Šablona:Harvp. Referred to by: Šablona:Harvp
  • Changes in stratospheric ozone have resulted in a decrease in radiative forcing of 0.05 W/m2: Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 28 January 2013. Kapitola Table 2.12. , in Šablona:Harvp. Referred to by: Šablona:Harvp

mit.edu

agage.mit.edu

  • Home | Advanced Global Atmospheric Gases Experiment. agage.mit.edu [online]. [cit. 2023-11-11]. Dostupné online. 

nasa.gov

giss.nasa.gov

  • NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. web.archive.org [online]. 2005-01-12 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-01-12. 
  • SCHMIDT, Gavin. Taking the Measure of the Greenhouse Effect. www.giss.nasa.gov [online]. NASA, 2010-10 [cit. 2023-10-29]. Dostupné online. 

nasascience.nasa.gov

  • NASA Science Mission Directorate article on the water cycle. nasascience.nasa.gov [online]. NASA, 2009-01-17 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2009-01-17. 

earthobservatory.nasa.gov

  • Water Vapor. earthobservatory.nasa.gov [online]. 2023-08-31 [cit. 2023-10-29]. Dostupné online. (anglicky) 

nasa.gov

  • NASA - Methane's Impacts on Climate Change May Be Twice Previous Estimates. web.archive.org [online]. 2005-09-11 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-09-11. 

nature.com

  • EDWARDS, Morgan R.; TRANCIK, Jessika E. Climate impacts of energy technologies depend on emissions timing. Nature Climate Change. 2014-05, roč. 4, čís. 5, s. 347–352. Dostupné online [cit. 2023-11-11]. ISSN 1758-6798. DOI 10.1038/nclimate2204. (anglicky) 

nih.gov

ncbi.nlm.nih.gov

noaa.gov

gml.noaa.gov

  • The NOAA Annual Greenhouse Gas Index (AGGI) [online]. National Oceanic and Atmospheric Administration (NOAA), 2024. Dostupné v archivu pořízeném z originálu dne 5 October 2024. 
  • US DEPARTMENT OF COMMERCE, NOAA. NOAA Global Monitoring Laboratory - THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI). gml.noaa.gov [online]. [cit. 2023-11-11]. Dostupné online. (EN-US) 
  • US DEPARTMENT OF COMMERCE, NOAA. NOAA/ESRL Global Monitoring Laboratory - THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI). gml.noaa.gov [online]. [cit. 2023-11-11]. Dostupné online. (EN-US) 

noaa.gov

  • Carbon dioxide now more than 50% higher than pre-industrial levels. www.noaa.gov [online]. NOAA [cit. 2023-10-29]. Dostupné online. 

nytimes.com

  • DAVENPORT, Coral. Nations, Fighting Powerful Refrigerant That Warms Planet, Reach Landmark Deal. The New York Times. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN 0362-4331. (anglicky) 

ornl.gov

cdiac.ornl.gov

  • BLASING,, T.J. Recent Greenhouse Gas Concentrations. [s.l.]: [s.n.] Dostupné online. DOI 10.3334/cdiac/atg.032. (anglicky) Type: dataset DOI: 10.3334/CDIAC/atg.032. 
  • Advanced Global Atmospheric Gases Experiment (AGAGE) [online]. [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.  Data compiled from finer time scales in the Prinn; ETC. ALE/GAGE/AGAGE database [online]. 2000 [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 
  • SF6 data from January 2004 [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 
  • STURGES, W.T. Concentrations of SF6 from 1970 through 1999, obtained from Antarctic firn (consolidated deep snow) air samples [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 

ourworldindata.org

  • RITCHIE, Hannah; ROSER, Max; ROSADO, Pablo. CO₂ and Greenhouse Gas Emissions [online]. ourworldindata.org, 2020-05-11 [cit. 2022-12-22]. Dostupné online. (anglicky) 

phys.org

  • University of Waterloo. Global warming caused by chlorofluorocarbons, not carbon dioxide, new study says. phys.org [online]. 2013-05-30 [cit. 2022-12-22]. Dostupné online. (anglicky) 

physicsworld.com

  • Are our water vapour emissions warming the climate?. physicsworld.com [online]. [cit. 2024-10-28]. Dostupné online. 

pnas.org

  • CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN 0027-8424. DOI 10.1073/pnas.0702737104. PMID 17962418. (anglicky) 

realclimate.org

  • GAVIN. Water vapour: feedback or forcing? [online]. RealClimate [cit. 2019-12-30]. Dostupné online. (anglicky) 
  • Water vapour: feedback or forcing? [online]. [cit. 2019-06-04]. Dostupné online. (anglicky) 
  • RealClimate: How long will global warming last?. www.realclimate.org [online]. 2005-03-15 [cit. 2023-11-11]. Dostupné online. (anglicky) 

rechargenews.com

  • COLLINS (L_COLLINS), Leigh. Hydrogen ‘twice as powerful a greenhouse gas as previously thought’: UK government study. Recharge | Latest renewable energy news [online]. 2022-04-08 [cit. 2023-10-29]. Dostupné online. (anglicky) 

science.org

  • KARL, Thomas R.; TRENBERTH, Kevin E. Modern Global Climate Change. Science. 2003-12-05, roč. 302, čís. 5651, s. 1719–1723. Dostupné online [cit. 2023-10-29]. ISSN 0036-8075. DOI 10.1126/science.1090228. (anglicky) 
  • NOLAN, Connor; OVERPECK, Jonathan T.; ALLEN, Judy R. M.; ANDERSON, Patricia M.; BETANCOURT, Julio L.; BINNEY, Heather A.; BREWER, Simon. Past and future global transformation of terrestrial ecosystems under climate change. S. 920–923. Science [online]. 2018-08-31. Roč. 361, čís. 6405, s. 920–923. Dostupné online. DOI 10.1126/science.aan5360. (anglicky) 

sequestration.org

  • Inside the Earth's invisible blanket. sequestration.org [online]. 2020-07-28 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2020-07-28. 

theguardian.com

  • JOHNSTON, Chris; MILMAN, Oliver; VIDAL, John. Climate change: global deal reached to limit use of hydrofluorocarbons. The Guardian. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN 0261-3077. (anglicky) 

uniba.sk

dmc.fmph.uniba.sk

  • Klimatická zmena a klimatické zmeny (zmena klímy a zmeny klímy), scenáre klimatickej zmeny, budúca klíma na Slovensku. www.dmc.fmph.uniba.sk [online]. [cit. 2019-06-04]. Dostupné v archivu pořízeném z originálu dne 2021-07-16. 

web.archive.org

  • NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. web.archive.org [online]. 2005-01-12 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-01-12. 
  • NASA Science Mission Directorate article on the water cycle. nasascience.nasa.gov [online]. NASA, 2009-01-17 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2009-01-17. 
  • Global Greenhouse Gas Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA. web.archive.org [online]. 2019-12-05 [cit. 2023-10-29]. Spalování uhlí, zemního plynu a ropy pro výrobu elektřiny a tepla je největším zdrojem celosvětových emisí skleníkových plynů.. Dostupné v archivu pořízeném z originálu dne 2019-12-05. 
  • Inside the Earth's invisible blanket. sequestration.org [online]. 2020-07-28 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2020-07-28. 
  • HELD, Isaac M.; SODEN, Brian J. Water Vapor Feedback and Global Warming. Annual Review of Energy and the Environment. 2000-11, roč. 25, čís. 1, s. 441–475. Dostupné online [cit. 2019-12-30]. ISSN 1056-3466. DOI 10.1146/annurev.energy.25.1.441. (anglicky)  Archivováno 17. 6. 2021 na Wayback Machine.
  • Klimatická zmena a klimatické zmeny (zmena klímy a zmeny klímy), scenáre klimatickej zmeny, budúca klíma na Slovensku. www.dmc.fmph.uniba.sk [online]. [cit. 2019-06-04]. Dostupné v archivu pořízeném z originálu dne 2021-07-16. 
  • The Chemistry of Earth's Atmosphere. web.archive.org [online]. NASA, 2008-09-20 [cit. 2023-10-29]. Dostupné online. 
  • MACCARTY, Nordica, Damon Ogle, Dean Still, Dr. Tami Bond, Christoph Roden, Dr. Bryan Willson. Laboratory Comparison of the Global-Warming Potential of Six Categories of Biomass Cooking Stoves [online]. 2007-08 [cit. 2023-10-29]. Dostupné v archivu pořízeném dne 2013-11-11. 
  • NASA - Methane's Impacts on Climate Change May Be Twice Previous Estimates. web.archive.org [online]. 2005-09-11 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-09-11. 
  • The NOAA Annual Greenhouse Gas Index (AGGI) [online]. National Oceanic and Atmospheric Administration (NOAA), 2024. Dostupné v archivu pořízeném z originálu dne 5 October 2024. 
  • JACOB, Daniel. Introduction to Atmospheric Chemistry. S. 25–26. www-as.harvard.edu [online]. 2011-09-02 [cit. 2023-11-11]. S. 25–26. Dostupné v archivu pořízeném z originálu dne 2011-09-02. 
  • Carbon dioxide levels continue at record levels, despite COVID-19 lockdown. public.wmo.int [online]. 2020-11-20 [cit. 2023-11-11]. Dostupné v archivu pořízeném z originálu dne 2020-12-01. (anglicky) 
  • Advanced Global Atmospheric Gases Experiment (AGAGE) [online]. [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.  Data compiled from finer time scales in the Prinn; ETC. ALE/GAGE/AGAGE database [online]. 2000 [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 
  • Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 12 October 2012. Kapitola Table 2.1. , in Šablona:Harvp. Referred to by: Šablona:Harvp
  • Ehhalt, D. Atmospheric Chemistry and Greenhouse Gases. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 3 January 2013. Kapitola Table 4.1. , in Šablona:Harvp. Referred to by: Šablona:Harvp. Based on Šablona:Harvp: Pre-1750 concentrations of CH4,N2O and current concentrations of O3, are taken from Table 4.1 (a) of the IPCC Intergovernmental Panel on Climate Change, 2001. Following the convention of IPCC (2001), inferred global-scale trace-gas concentrations from prior to 1750 are assumed to be practically uninfluenced by human activities such as increasingly specialized agriculture, land clearing, and combustion of fossil fuels. Preindustrial concentrations of industrially manufactured compounds are given as zero. The short atmospheric lifetime of ozone (hours-days) together with the spatial variability of its sources precludes a globally or vertically homogeneous distribution, so that a fractional unit such as parts per billion would not apply over a range of altitudes or geographical locations. Therefore a different unit is used to integrate the varying concentrations of ozone in the vertical dimension over a unit area, and the results can then be averaged globally. This unit is called a Dobson Unit (D.U.), after G.M.B. Dobson, one of the first investigators of atmospheric ozone. A Dobson unit is the amount of ozone in a column that, unmixed with the rest of the atmosphere, would be 10 micrometers thick at standard temperature and pressure.
  • Changes in stratospheric ozone have resulted in a decrease in radiative forcing of 0.05 W/m2: Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 28 January 2013. Kapitola Table 2.12. , in Šablona:Harvp. Referred to by: Šablona:Harvp
  • SF6 data from January 2004 [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 
  • STURGES, W.T. Concentrations of SF6 from 1970 through 1999, obtained from Antarctic firn (consolidated deep snow) air samples [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013. 

wiley.com

doi.wiley.com

  • HÖPFNER, M.; MILZ, M.; BUEHLER, S. The natural greenhouse effect of atmospheric oxygen (O 2 ) and nitrogen (N 2 ): NATURAL GREENHOUSE EFFECT OF O 2 and N 2. Geophysical Research Letters. 2012-05-28, roč. 39, čís. 10, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2012GL051409. (anglicky) 
  • SCHMIDT, Gavin A.; RUEDY, Reto A.; MILLER, Ron L. Attribution of the present-day total greenhouse effect. Journal of Geophysical Research. 2010-10-16, roč. 115, čís. D20. Dostupné online [cit. 2023-10-29]. ISSN 0148-0227. DOI 10.1029/2010JD014287. (anglicky) 
  • ISAKSEN, Ivar S. A.; GAUSS, Michael; MYHRE, Gunnar. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions: ARCTIC METHANE FEEDBACK. Global Biogeochemical Cycles. 2011-06, roč. 25, čís. 2, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2010GB003845. (anglicky) 
  • SHINDELL, Drew T.; FALUVEGI, Greg; BELL, Nadine. An emissions-based view of climate forcing by methane and tropospheric ozone: EMISSIONS-BASED CLIMATE FORCING. Geophysical Research Letters. 2005-02, roč. 32, čís. 4, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI 10.1029/2004GL021900. (anglicky) 

wmo.int

public.wmo.int

  • Carbon dioxide levels continue at record levels, despite COVID-19 lockdown. public.wmo.int [online]. 2020-11-20 [cit. 2023-11-11]. Dostupné v archivu pořízeném z originálu dne 2020-12-01. (anglicky) 

worldbank.org

data.worldbank.org

worldcat.org