HAUSFATHER, Zeke. Analysis: When might the world exceed 1.5C and 2C of global warming?. Carbon Brief [online]. 2020-12-04 [cit. 2023-10-29]. Dostupné online. (anglicky)
HÖPFNER, M.; MILZ, M.; BUEHLER, S. The natural greenhouse effect of atmospheric oxygen (O 2 ) and nitrogen (N 2 ): NATURAL GREENHOUSE EFFECT OF O 2 and N 2. Geophysical Research Letters. 2012-05-28, roč. 39, čís. 10, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2012GL051409. (anglicky)
ISAKSEN, Ivar S. A.; GAUSS, Michael; MYHRE, Gunnar. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions: ARCTIC METHANE FEEDBACK. Global Biogeochemical Cycles. 2011-06, roč. 25, čís. 2, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2010GB003845. (anglicky)
SHINDELL, Drew T.; FALUVEGI, Greg; BELL, Nadine. An emissions-based view of climate forcing by methane and tropospheric ozone: EMISSIONS-BASED CLIMATE FORCING. Geophysical Research Letters. 2005-02, roč. 32, čís. 4, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2004GL021900. (anglicky)
EDWARDS, Morgan R.; TRANCIK, Jessika E. Climate impacts of energy technologies depend on emissions timing. Nature Climate Change. 2014-05, roč. 4, čís. 5, s. 347–352. Dostupné online [cit. 2023-11-11]. ISSN1758-6798. DOI10.1038/nclimate2204. (anglicky)
CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN0027-8424. DOI10.1073/pnas.0702737104. PMID17962418. (anglicky)
BLASING,, T.J. Recent Greenhouse Gas Concentrations. [s.l.]: [s.n.] Dostupné online. DOI10.3334/cdiac/atg.032. (anglicky) Type: dataset
DOI: 10.3334/CDIAC/atg.032.
NOLAN, Connor; OVERPECK, Jonathan T.; ALLEN, Judy R. M.; ANDERSON, Patricia M.; BETANCOURT, Julio L.; BINNEY, Heather A.; BREWER, Simon. Past and future global transformation of terrestrial ecosystems under climate change. S. 920–923. Science [online]. 2018-08-31. Roč. 361, čís. 6405, s. 920–923. Dostupné online. DOI10.1126/science.aan5360. (anglicky)
Nuclear Power and the Environment - Energy Explained, Your Guide To Understanding Energy - Energy Information Administration. www.eia.gov [online]. [cit. 2019-04-16]. Dostupné online.
epa.gov
Global Greenhouse Gas Emissions Data. www.epa.gov [online]. US EPA [cit. 2023-10-29]. Dostupné online.
Climate Change Indicators: Greenhouse Gases. www.epa.gov [online]. US EPA [cit. 2023-10-29]. Životnost oxidu uhličitého nelze vyjádřit jedinou hodnotou, protože tento plyn se v průběhu času neničí, ale pohybuje se mezi různými částmi systému oceán-atmosféra-země. Část přebytečného oxidu uhličitého je rychle pohlcena (například povrchem oceánů), ale část zůstane v atmosféře po tisíce let, což je částečně způsobeno velmi pomalým procesem, při kterém se uhlík přenáší do oceánských sedimentů.. Dostupné online.
Global Greenhouse Gas Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA. web.archive.org [online]. 2019-12-05 [cit. 2023-10-29]. Spalování uhlí, zemního plynu a ropy pro výrobu elektřiny a tepla je největším zdrojem celosvětových emisí skleníkových plynů.. Dostupné v archivu pořízeném z originálu dne 2019-12-05.
Atmospheric Concentrations of Greenhouse Gases [online]. US EPA [cit. 2023-10-29]. Dostupné online.
US EPA, OAR. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010. US EPA [online]. 2016-02-05 [cit. 2019-12-30]. Dostupné online. (anglicky)
AGU Web Site: Water Vapor in the Climate System. A Special Report.. www.eso.org [online]. [cit. 2023-11-11]. Dostupné online.
globalchange.gov
Annual Greenhouse Gas Index | GlobalChange.gov. www.globalchange.gov [online]. [cit. 2023-11-11]. Dostupné online. (anglicky)
grida.no
Ehhalt, D. Atmospheric Chemistry and Greenhouse Gases. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 3 January 2013. Kapitola Table 4.1.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp. Based on Šablona:Harvp: Pre-1750 concentrations of CH4,N2O and current concentrations of O3, are taken from Table 4.1 (a) of the IPCC Intergovernmental Panel on Climate Change, 2001. Following the convention of IPCC (2001), inferred global-scale trace-gas concentrations from prior to 1750 are assumed to be practically uninfluenced by human activities such as increasingly specialized agriculture, land clearing, and combustion of fossil fuels. Preindustrial concentrations of industrially manufactured compounds are given as zero. The short atmospheric lifetime of ozone (hours-days) together with the spatial variability of its sources precludes a globally or vertically homogeneous distribution, so that a fractional unit such as parts per billion would not apply over a range of altitudes or geographical locations. Therefore a different unit is used to integrate the varying concentrations of ozone in the vertical dimension over a unit area, and the results can then be averaged globally. This unit is called a Dobson Unit (D.U.), after G.M.B. Dobson, one of the first investigators of atmospheric ozone. A Dobson unit is the amount of ozone in a column that, unmixed with the rest of the atmosphere, would be 10 micrometers thick at standard temperature and pressure.
harvard.edu
www-as.harvard.edu
JACOB, Daniel. Introduction to Atmospheric Chemistry. S. 25–26. www-as.harvard.edu [online]. 2011-09-02 [cit. 2023-11-11]. S. 25–26. Dostupné v archivu pořízeném z originálu dne 2011-09-02.
Earth's Outgoing Radiation Monitoring From the Moon. ieeexplore.ieee.org [online]. [cit. 2024-10-27]. Dostupné online.
iop.org
iopscience.iop.org
How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations?. iopscience.iop.org [online]. [cit. 2024-10-28]. Dostupné online.
ipcc.ch
Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 12 October 2012. Kapitola Table 2.1.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp
The pre-1750 value for N2O is consistent with ice-core records from 10,000 BCE through 1750 CE: Figure SPM.1. [s.l.]: IPCC Kapitola Summary for policymakers.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp
Changes in stratospheric ozone have resulted in a decrease in radiative forcing of 0.05 W/m2: Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 28 January 2013. Kapitola Table 2.12.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp
mit.edu
agage.mit.edu
Home | Advanced Global Atmospheric Gases Experiment. agage.mit.edu [online]. [cit. 2023-11-11]. Dostupné online.
nasa.gov
giss.nasa.gov
NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. web.archive.org [online]. 2005-01-12 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-01-12.
SCHMIDT, Gavin. Taking the Measure of the Greenhouse Effect. www.giss.nasa.gov [online]. NASA, 2010-10 [cit. 2023-10-29]. Dostupné online.
nasascience.nasa.gov
NASA Science Mission Directorate article on the water cycle. nasascience.nasa.gov [online]. NASA, 2009-01-17 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2009-01-17.
earthobservatory.nasa.gov
Water Vapor. earthobservatory.nasa.gov [online]. 2023-08-31 [cit. 2023-10-29]. Dostupné online. (anglicky)
nasa.gov
NASA - Methane's Impacts on Climate Change May Be Twice Previous Estimates. web.archive.org [online]. 2005-09-11 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-09-11.
nature.com
EDWARDS, Morgan R.; TRANCIK, Jessika E. Climate impacts of energy technologies depend on emissions timing. Nature Climate Change. 2014-05, roč. 4, čís. 5, s. 347–352. Dostupné online [cit. 2023-11-11]. ISSN1758-6798. DOI10.1038/nclimate2204. (anglicky)
CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN0027-8424. DOI10.1073/pnas.0702737104. PMID17962418. (anglicky)
noaa.gov
gml.noaa.gov
The NOAA Annual Greenhouse Gas Index (AGGI) [online]. National Oceanic and Atmospheric Administration (NOAA), 2024. Dostupné v archivu pořízeném z originálu dne 5 October 2024.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
US DEPARTMENT OF COMMERCE, NOAA. NOAA Global Monitoring Laboratory - THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI). gml.noaa.gov [online]. [cit. 2023-11-11]. Dostupné online. (EN-US)
US DEPARTMENT OF COMMERCE, NOAA. NOAA/ESRL Global Monitoring Laboratory - THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI). gml.noaa.gov [online]. [cit. 2023-11-11]. Dostupné online. (EN-US)
noaa.gov
Carbon dioxide now more than 50% higher than pre-industrial levels. www.noaa.gov [online]. NOAA [cit. 2023-10-29]. Dostupné online.
nytimes.com
DAVENPORT, Coral. Nations, Fighting Powerful Refrigerant That Warms Planet, Reach Landmark Deal. The New York Times. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN0362-4331. (anglicky)
ornl.gov
cdiac.ornl.gov
BLASING,, T.J. Recent Greenhouse Gas Concentrations. [s.l.]: [s.n.] Dostupné online. DOI10.3334/cdiac/atg.032. (anglicky) Type: dataset
DOI: 10.3334/CDIAC/atg.032.
Advanced Global Atmospheric Gases Experiment (AGAGE) [online]. [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“. Data compiled from finer time scales in the Prinn; ETC. ALE/GAGE/AGAGE database [online]. 2000 [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
SF6 data from January 2004 [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
STURGES, W.T. Concentrations of SF6 from 1970 through 1999, obtained from Antarctic firn (consolidated deep snow) air samples [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
ourworldindata.org
RITCHIE, Hannah; ROSER, Max; ROSADO, Pablo. CO₂ and Greenhouse Gas Emissions [online]. ourworldindata.org, 2020-05-11 [cit. 2022-12-22]. Dostupné online. (anglicky)
phys.org
University of Waterloo. Global warming caused by chlorofluorocarbons, not carbon dioxide, new study says. phys.org [online]. 2013-05-30 [cit. 2022-12-22]. Dostupné online. (anglicky)
physicsworld.com
Are our water vapour emissions warming the climate?. physicsworld.com [online]. [cit. 2024-10-28]. Dostupné online.
pnas.org
CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN0027-8424. DOI10.1073/pnas.0702737104. PMID17962418. (anglicky)
realclimate.org
GAVIN. Water vapour: feedback or forcing? [online]. RealClimate [cit. 2019-12-30]. Dostupné online. (anglicky)
Water vapour: feedback or forcing? [online]. [cit. 2019-06-04]. Dostupné online. (anglicky)
RealClimate: How long will global warming last?. www.realclimate.org [online]. 2005-03-15 [cit. 2023-11-11]. Dostupné online. (anglicky)
rechargenews.com
COLLINS (L_COLLINS), Leigh. Hydrogen ‘twice as powerful a greenhouse gas as previously thought’: UK government study. Recharge | Latest renewable energy news [online]. 2022-04-08 [cit. 2023-10-29]. Dostupné online. (anglicky)
NOLAN, Connor; OVERPECK, Jonathan T.; ALLEN, Judy R. M.; ANDERSON, Patricia M.; BETANCOURT, Julio L.; BINNEY, Heather A.; BREWER, Simon. Past and future global transformation of terrestrial ecosystems under climate change. S. 920–923. Science [online]. 2018-08-31. Roč. 361, čís. 6405, s. 920–923. Dostupné online. DOI10.1126/science.aan5360. (anglicky)
sequestration.org
Inside the Earth's invisible blanket. sequestration.org [online]. 2020-07-28 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2020-07-28.
theguardian.com
JOHNSTON, Chris; MILMAN, Oliver; VIDAL, John. Climate change: global deal reached to limit use of hydrofluorocarbons. The Guardian. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN0261-3077. (anglicky)
uniba.sk
dmc.fmph.uniba.sk
Klimatická zmena a klimatické zmeny (zmena klímy a zmeny klímy), scenáre klimatickej zmeny, budúca klíma na Slovensku. www.dmc.fmph.uniba.sk [online]. [cit. 2019-06-04]. Dostupné v archivu pořízeném z originálu dne 2021-07-16.
web.archive.org
NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. web.archive.org [online]. 2005-01-12 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-01-12.
NASA Science Mission Directorate article on the water cycle. nasascience.nasa.gov [online]. NASA, 2009-01-17 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2009-01-17.
Global Greenhouse Gas Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA. web.archive.org [online]. 2019-12-05 [cit. 2023-10-29]. Spalování uhlí, zemního plynu a ropy pro výrobu elektřiny a tepla je největším zdrojem celosvětových emisí skleníkových plynů.. Dostupné v archivu pořízeném z originálu dne 2019-12-05.
Inside the Earth's invisible blanket. sequestration.org [online]. 2020-07-28 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2020-07-28.
Klimatická zmena a klimatické zmeny (zmena klímy a zmeny klímy), scenáre klimatickej zmeny, budúca klíma na Slovensku. www.dmc.fmph.uniba.sk [online]. [cit. 2019-06-04]. Dostupné v archivu pořízeném z originálu dne 2021-07-16.
The Chemistry of Earth's Atmosphere. web.archive.org [online]. NASA, 2008-09-20 [cit. 2023-10-29]. Dostupné online.
MACCARTY, Nordica, Damon Ogle, Dean Still, Dr. Tami Bond, Christoph Roden, Dr. Bryan Willson. Laboratory Comparison of the Global-Warming Potential of Six Categories of Biomass Cooking Stoves [online]. 2007-08 [cit. 2023-10-29]. Dostupné v archivu pořízeném dne 2013-11-11.
NASA - Methane's Impacts on Climate Change May Be Twice Previous Estimates. web.archive.org [online]. 2005-09-11 [cit. 2023-10-29]. Dostupné v archivu pořízeném z originálu dne 2005-09-11.
The NOAA Annual Greenhouse Gas Index (AGGI) [online]. National Oceanic and Atmospheric Administration (NOAA), 2024. Dostupné v archivu pořízeném z originálu dne 5 October 2024.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
JACOB, Daniel. Introduction to Atmospheric Chemistry. S. 25–26. www-as.harvard.edu [online]. 2011-09-02 [cit. 2023-11-11]. S. 25–26. Dostupné v archivu pořízeném z originálu dne 2011-09-02.
Carbon dioxide levels continue at record levels, despite COVID-19 lockdown. public.wmo.int [online]. 2020-11-20 [cit. 2023-11-11]. Dostupné v archivu pořízeném z originálu dne 2020-12-01. (anglicky)
Advanced Global Atmospheric Gases Experiment (AGAGE) [online]. [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“. Data compiled from finer time scales in the Prinn; ETC. ALE/GAGE/AGAGE database [online]. 2000 [cit. 2012-10-30]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 12 October 2012. Kapitola Table 2.1.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp
Ehhalt, D. Atmospheric Chemistry and Greenhouse Gases. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 3 January 2013. Kapitola Table 4.1.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp. Based on Šablona:Harvp: Pre-1750 concentrations of CH4,N2O and current concentrations of O3, are taken from Table 4.1 (a) of the IPCC Intergovernmental Panel on Climate Change, 2001. Following the convention of IPCC (2001), inferred global-scale trace-gas concentrations from prior to 1750 are assumed to be practically uninfluenced by human activities such as increasingly specialized agriculture, land clearing, and combustion of fossil fuels. Preindustrial concentrations of industrially manufactured compounds are given as zero. The short atmospheric lifetime of ozone (hours-days) together with the spatial variability of its sources precludes a globally or vertically homogeneous distribution, so that a fractional unit such as parts per billion would not apply over a range of altitudes or geographical locations. Therefore a different unit is used to integrate the varying concentrations of ozone in the vertical dimension over a unit area, and the results can then be averaged globally. This unit is called a Dobson Unit (D.U.), after G.M.B. Dobson, one of the first investigators of atmospheric ozone. A Dobson unit is the amount of ozone in a column that, unmixed with the rest of the atmosphere, would be 10 micrometers thick at standard temperature and pressure.
Changes in stratospheric ozone have resulted in a decrease in radiative forcing of 0.05 W/m2: Forster, P. Changes in Atmospheric Constituents and in Radiative Forcing. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 28 January 2013. Kapitola Table 2.12.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“., in Šablona:Harvp. Referred to by: Šablona:Harvp
SF6 data from January 2004 [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
STURGES, W.T. Concentrations of SF6 from 1970 through 1999, obtained from Antarctic firn (consolidated deep snow) air samples [online]. [cit. 2013-01-02]. Dostupné v archivu pořízeném z originálu dne 21 January 2013.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
wiley.com
doi.wiley.com
HÖPFNER, M.; MILZ, M.; BUEHLER, S. The natural greenhouse effect of atmospheric oxygen (O 2 ) and nitrogen (N 2 ): NATURAL GREENHOUSE EFFECT OF O 2 and N 2. Geophysical Research Letters. 2012-05-28, roč. 39, čís. 10, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2012GL051409. (anglicky)
SCHMIDT, Gavin A.; RUEDY, Reto A.; MILLER, Ron L. Attribution of the present-day total greenhouse effect. Journal of Geophysical Research. 2010-10-16, roč. 115, čís. D20. Dostupné online [cit. 2023-10-29]. ISSN0148-0227. DOI10.1029/2010JD014287. (anglicky)
ISAKSEN, Ivar S. A.; GAUSS, Michael; MYHRE, Gunnar. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions: ARCTIC METHANE FEEDBACK. Global Biogeochemical Cycles. 2011-06, roč. 25, čís. 2, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2010GB003845. (anglicky)
SHINDELL, Drew T.; FALUVEGI, Greg; BELL, Nadine. An emissions-based view of climate forcing by methane and tropospheric ozone: EMISSIONS-BASED CLIMATE FORCING. Geophysical Research Letters. 2005-02, roč. 32, čís. 4, s. n/a–n/a. Dostupné online [cit. 2023-10-29]. DOI10.1029/2004GL021900. (anglicky)
wmo.int
public.wmo.int
Carbon dioxide levels continue at record levels, despite COVID-19 lockdown. public.wmo.int [online]. 2020-11-20 [cit. 2023-11-11]. Dostupné v archivu pořízeném z originálu dne 2020-12-01. (anglicky)
JOHNSTON, Chris; MILMAN, Oliver; VIDAL, John. Climate change: global deal reached to limit use of hydrofluorocarbons. The Guardian. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN0261-3077. (anglicky)
DAVENPORT, Coral. Nations, Fighting Powerful Refrigerant That Warms Planet, Reach Landmark Deal. The New York Times. 2016-10-15. Dostupné online [cit. 2023-10-29]. ISSN0362-4331. (anglicky)
EDWARDS, Morgan R.; TRANCIK, Jessika E. Climate impacts of energy technologies depend on emissions timing. Nature Climate Change. 2014-05, roč. 4, čís. 5, s. 347–352. Dostupné online [cit. 2023-11-11]. ISSN1758-6798. DOI10.1038/nclimate2204. (anglicky)
CANADELL, Josep G.; LE QUÉRÉ, Corinne; RAUPACH, Michael R. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 2007-11-20, roč. 104, čís. 47, s. 18866–18870. Dostupné online [cit. 2023-11-11]. ISSN0027-8424. DOI10.1073/pnas.0702737104. PMID17962418. (anglicky)