AMAP Arctic Climate Change Update 2021: Key Trends and Impacts | AMAP. S. vii. www.amap.no [online]. [cit. 2023-10-14]. S. vii. Dostupné online. (anglicky)
ametsoc.org
journals.ametsoc.org
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN1520-0493. DOI10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN)
BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0318.1. (EN)
STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-1005.1.
archive.org
HASSOL, Susan Joy. Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge: Cambridge university press, 2004. Dostupné online. ISBN978-0-521-61778-9.
HASSOL, Susan Joy. Impacts of a warming Arctic: Arctic climate impact assessment. Reprinted. vyd. Cambridge: Cambridge Univ. Press, 2004. 139 s. Dostupné online. ISBN978-0-521-61778-9.
arctic-council.org
STANLEY, Michael. Gas flaring: An industry practice faces increasing global attention [online]. Arctic Council [cit. 2023-10-14]. Dostupné v archivu pořízeném z originálu dne 2019-02-15.
bbc.co.uk
news.bbc.co.uk
Earth - melting in the heat?. news.bbc.co.uk. 2007-05-18. Dostupné online [cit. 2023-10-14]. (anglicky)
bbc.com
Climate change: Wildfire smoke linked to Arctic melting. BBC News. 2022-03-18. Dostupné online [cit. 2023-10-14]. (anglicky)
Arctic Circle sees 'highest-ever' recorded temperatures. BBC News. 2020-06-22. Dostupné online [cit. 2023-10-14]. (anglicky)
Climate change: Siberian heatwave 'clear evidence' of warming. BBC News. 2020-07-15. Dostupné online [cit. 2023-10-14]. (anglicky)
Climate change: Warmth shatters section of Greenland ice shelf. BBC News. 2020-09-14. Dostupné online [cit. 2023-10-15]. (anglicky)
DVDMCKAY. Exceeding 1.5 °C global warming could trigger multiple climate tipping points – paper explainer [online]. 2022-09-09 [cit. 2023-10-14]. Dostupné online. (anglicky)
DVDMCKAY. Exceeding 1.5 °C global warming could trigger multiple climate tipping points – paper explainer [online]. 2022-09-09 [cit. 2023-10-15]. Dostupné online. (anglicky)
copernicus.org
acp.copernicus.org
QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-8-1723-2008. (English)
STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-13-8833-2013. (English)
tc.copernicus.org
PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN1994-0416. DOI10.5194/tc-12-433-2018. (English)
bg.copernicus.org
HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN1726-4170. DOI10.5194/bg-11-6573-2014. (English)
doi.org
dx.doi.org
KESSLER, Louise. ESTIMATING THE ECONOMIC IMPACT OF THE PERMAFROST CARBON FEEDBACK. Climate Change Economics. 2017-05, roč. 08, čís. 02, s. 1750008. Dostupné online [cit. 2023-10-14]. ISSN2010-0078. DOI10.1142/S2010007817500087. (anglicky)
ARVELO, Juan. An Under-Ice Arctic Geophysical Exploration Sonar System Concept To Resolve International Territorial Claims. pubs.aip.org [online]. [cit. 2023-10-14]. Dostupné online. DOI10.1121/1.3626896.
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-14]. DOI10.1029/2012GL051000. (anglicky)
RANTANEN, Mika; KARPECHKO, Alexey Yu; LIPPONEN, Antti. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022-08-11, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2662-4435. DOI10.1038/s43247-022-00498-3. (anglicky)
CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN1573-1480. DOI10.1007/s10584-021-03052-w. PMID34720262. (anglicky)
YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN2072-4292. DOI10.3390/rs13142813. (anglicky)
QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-8-1723-2008. (English)
MILLER, Gifford H.; LEHMAN, Scott J.; REFSNIDER, Kurt A. Unprecedented recent summer warmth in Arctic Canada: UNPRECEDENTED ARCTIC WARMTH. Geophysical Research Letters. 2013-11-16, roč. 40, čís. 21, s. 5745–5751. Dostupné online [cit. 2023-10-14]. DOI10.1002/2013GL057188. (anglicky)
SINGH, Hansi A.; POLVANI, Lorenzo M. Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science. 2020-10-08, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2397-3722. DOI10.1038/s41612-020-00143-w. (anglicky)
AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN2041-1723. DOI10.1038/s41467-020-20781-1. PMID33479205. (anglicky)
PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082914. (anglicky)
ISAKSEN, Ketil; NORDLI, Øyvind; IVANOV, Boris. Exceptional warming over the Barents area. Scientific Reports. 2022-06-15, roč. 12, čís. 1, s. 9371. Dostupné online [cit. 2023-10-14]. ISSN2045-2322. DOI10.1038/s41598-022-13568-5. (anglicky)
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
ACOSTA NAVARRO, J. C.; VARMA, V.; RIIPINEN, I. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience. 2016-04, roč. 9, čís. 4, s. 277–281. Dostupné online [cit. 2023-10-14]. ISSN1752-0908. DOI10.1038/ngeo2673. (anglicky)
CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2009GL038777. (anglicky)
STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-13-8833-2013. (English)
ZHU, Chunmao; KANAYA, Yugo; TAKIGAWA, Masayuki. Flexpart v10.1 simulation of source contributions to Arctic black carbon. doi.org [online]. 2019-09-24 [cit. 2023-10-14]. Dostupné online. DOI10.5194/acp-2019-590.
ZHANG, Qiang; WAN, Zheng; HEMMINGS, Bill. Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production. 2019-12-20, roč. 241, s. 118261. Dostupné online [cit. 2023-10-14]. ISSN0959-6526. DOI10.1016/j.jclepro.2019.118261.
HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082791. (anglicky)
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
FISHER, David; ZHENG, James; BURGESS, David. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change. 2012-03-01, roč. 84-85, čís. Perspectives on Climate in Medieval Time, s. 3–7. Dostupné online [cit. 2023-10-14]. ISSN0921-8181. DOI10.1016/j.gloplacha.2011.06.005.
STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1002/2013GL058951. (anglicky)
LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2005GL025080. (anglicky)
STROEVE, Julienne; HOLLAND, Marika M.; MEIER, Walt. Arctic sea ice decline: Faster than forecast: ARCTIC ICE LOSS-FASTER THAN FORECAST. Geophysical Research Letters. 2007-05-16, roč. 34, čís. 9. Dostupné online [cit. 2023-10-14]. DOI10.1029/2007GL029703. (anglicky)
PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN1994-0416. DOI10.5194/tc-12-433-2018. (English)
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
GREGORY, Jonathan M.; HUYBRECHTS, Philippe; RAPER, Sarah C. B. Threatened loss of the Greenland ice-sheet. Nature. 2004-04, roč. 428, čís. 6983, s. 616–616. Dostupné online [cit. 2023-10-14]. ISSN1476-4687. DOI10.1038/428616a. (anglicky)
ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN1520-0493. DOI10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN)
OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN0096-3941. DOI10.1029/2005EO340001. (anglicky)
BUTT, Faisal A; DRANGE, Helge; ELVERHØI, Anders. Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results. Quaternary Science Reviews. 2002-08-01, roč. 21, čís. 14, s. 1643–1660. Dostupné online [cit. 2023-10-15]. ISSN0277-3791. DOI10.1016/S0277-3791(02)00018-5.
VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2009GL040222. (anglicky)
CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2003GL018680. (anglicky)
BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN1654-7209. DOI10.1007/s13280-019-01161-6. PMID30929249. (anglicky)
MYERS-SMITH, Isla H.; KERBY, Jeffrey T.; PHOENIX, Gareth K. Complexity revealed in the greening of the Arctic. Nature Climate Change. 2020-02, roč. 10, čís. 2, s. 106–117. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0688-1. (anglicky)
BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-18479-5. PMID32963240. (anglicky)
MARTIN, Andrew; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach.. In: [s.l.]: Open Science Centre, University of Jyväskylä, 2018. Dostupné online. DOI10.17011/conference/eccb2018/108642.
MYERS‐SMITH, Isla H.; HIK, David S. Climate warming as a driver of tundra shrubline advance. Journal of Ecology. 2018-03, roč. 106, čís. 2, s. 547–560. Dostupné online [cit. 2023-10-15]. ISSN0022-0477. DOI10.1111/1365-2745.12817. (anglicky)
ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN1664-221X. DOI10.1007/s00035-014-0133-z. (anglicky)
TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/j.1365-2486.2006.01128.x. (anglicky)
ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN2193-1801. DOI10.1186/2193-1801-3-157. PMID24790813.
LORANTY, Michael M.; GOETZ, Scott J.; BECK, Pieter S. A. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters. 2011-05, roč. 6, čís. 2, s. 024014. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/6/2/024014. (anglicky)
BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0318.1. (EN)
JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aao1167. PMID30009255. (anglicky)
MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/aa7989.
WITZE, Alexandra. The Arctic is burning like never before — and that’s bad news for climate change. Nature. 2020-09-10, roč. 585, čís. 7825, s. 336–337. Dostupné online [cit. 2023-10-15]. DOI10.1038/d41586-020-02568-y. (anglicky)
LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic25. (anglicky)
WU, Qiang. Satellite observations of unprecedented phytoplankton blooms in the Southern Ocean. doi.org [online]. 2019-12-24 [cit. 2023-10-15]. Dostupné online. DOI10.5194/tc-2019-282-sc1.
DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/gcb.13381. (anglicky)
WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN0019-1019. DOI10.1111/ibi.12571. (anglicky)
DOUGLAS, Thomas A.; TURETSKY, Merritt R.; KOVEN, Charles D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Climate and Atmospheric Science. 2020-07-24, roč. 3, čís. 1, s. 1–7. Dostupné online [cit. 2023-10-15]. ISSN2397-3722. DOI10.1038/s41612-020-0130-4. (anglicky)
SAYEDI, Sayedeh Sara; ABBOTT, Benjamin W.; THORNTON, Brett F. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters. 2020-12, roč. 15, čís. 12, s. 124075. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/abcc29. (anglicky)
HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN1726-4170. DOI10.5194/bg-11-6573-2014. (English)
NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN1432-1939. DOI10.1007/s00442-009-1556-x. PMID20084398. (anglicky)
SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN1525-3244. DOI10.1641/b580807.
LI, Qi; HU, Weifang; LI, Linfeng. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of The Total Environment. 2023-01-10, roč. 855, s. 158710. Dostupné online [cit. 2023-10-15]. ISSN0048-9697. DOI10.1016/j.scitotenv.2022.158710.
PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-20102-6. PMID33303752. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2103081118. PMID34400500. (anglicky)
KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2117308119. PMID35588449. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2201191119. PMID35588452. (anglicky)
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2005GL022751. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; LEIFER, Ira. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014-01, roč. 7, čís. 1, s. 64–70. Dostupné online [cit. 2023-10-15]. ISSN1752-0908. DOI10.1038/ngeo2007. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/ncomms15872. PMID28639616. (anglicky)
HILL, Christopher. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report. [s.l.]: [s.n.] Dostupné online. DOI10.2172/1184378. (English) DOI: 10.2172/1184378.
NELSON, Daniel. The Gulf Stream May Be Weaker Than It Has Been In 1600 Years, Could Exacerbate Climate Change. Science Trends. 2018-04-19. Dostupné online [cit. 2023-10-15]. DOI10.31988/SciTrends.15937. (anglicky)
FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-15]. DOI10.1029/2012GL051000. (anglicky)
ZIELINSKI, Gregory A.; MERSHON, Grant R. Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene–Holocene transition. GSA Bulletin [online]. 1997 [cit. 2023-10-15]. Dostupné online. DOI10.1130/0016-7606(1997)109%3C0547:piotim%3E2.3.co;2.
BLACKPORT, Russell; SCREEN, James A.; VAN DER WIEL, Karin. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change. 2019-09, roč. 9, čís. 9, s. 697–704. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0551-4. (anglicky)
BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aay2880. PMID32128402. (anglicky)
STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-1005.1.
SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-022-28283-y. PMID35132058. (anglicky)
BERKES, Fikret; JOLLY, Dyanna. Adapting to Climate Change: Social-Ecological Resilience in a Canadian Western Arctic Community. Conservation Ecology. 2001-12-20, roč. 5, čís. 2. Dostupné online [cit. 2023-10-15]. ISSN1195-5449. DOI10.5751/ES-00342-050218. (anglicky)
FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic69833. (anglicky)
TIMONIN, Andrey. Climate Change in the Arctic and Future Directions for Adaptation: Views From Non-Arctic States. SSRN [online]. [cit. 2023-10-15]. Dostupné online.
doi.org
CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN1573-1480. DOI10.1007/s10584-021-03052-w. PMID34720262. (anglicky)
ZHU, Chunmao; KANAYA, Yugo; TAKIGAWA, Masayuki. Flexpart v10.1 simulation of source contributions to Arctic black carbon. doi.org [online]. 2019-09-24 [cit. 2023-10-14]. Dostupné online. DOI10.5194/acp-2019-590.
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN1654-7209. DOI10.1007/s13280-019-01161-6. PMID30929249. (anglicky)
ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN1664-221X. DOI10.1007/s00035-014-0133-z. (anglicky)
ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN2193-1801. DOI10.1186/2193-1801-3-157. PMID24790813.
MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/aa7989.
WU, Qiang. Satellite observations of unprecedented phytoplankton blooms in the Southern Ocean. doi.org [online]. 2019-12-24 [cit. 2023-10-15]. Dostupné online. DOI10.5194/tc-2019-282-sc1.
NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN1432-1939. DOI10.1007/s00442-009-1556-x. PMID20084398. (anglicky)
SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN1525-3244. DOI10.1641/b580807.
ZIELINSKI, Gregory A.; MERSHON, Grant R. Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene–Holocene transition. GSA Bulletin [online]. 1997 [cit. 2023-10-15]. Dostupné online. DOI10.1130/0016-7606(1997)109%3C0547:piotim%3E2.3.co;2.
illinois.edu
q.sustainability.illinois.edu
Oped: The Price of Black Carbon | Q Magazine [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
insideclimatenews.org
BERWYN, Bob. Polar Vortex: How the Jet Stream and Climate Change Bring on Cold Snaps [online]. 2018-02-02 [cit. 2023-10-14]. Dostupné online. (anglicky)
jyu.fi
jyx.jyu.fi
MARTIN, Andrew; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach.. In: [s.l.]: Open Science Centre, University of Jyväskylä, 2018. Dostupné online. DOI10.17011/conference/eccb2018/108642.
livescience.com
MAIN, Douglas. Arctic Temperatures Highest in at Least 44,000 Years. livescience.com [online]. 2013-10-24 [cit. 2023-10-14]. Dostupné online. (anglicky)
PAPPAS, Stephanie Pappas. Nothing will stop Greenland's ice sheet from shrinking now. livescience.com [online]. 2020-08-17 [cit. 2023-10-15]. Dostupné online. (anglicky)
WEISBERGER, Mindy. More Than 200 Reindeer Found Dead in Norway, Starved by Climate Change. livescience.com [online]. 2019-07-29 [cit. 2023-10-15]. Dostupné online. (anglicky)
mdpi.com
YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN2072-4292. DOI10.3390/rs13142813. (anglicky)
nasa.gov
Satellites See Unprecedented Greenland Ice Sheet Surface Melt - NASA [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
nature.com
RANTANEN, Mika; KARPECHKO, Alexey Yu; LIPPONEN, Antti. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022-08-11, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2662-4435. DOI10.1038/s43247-022-00498-3. (anglicky)
SINGH, Hansi A.; POLVANI, Lorenzo M. Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science. 2020-10-08, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2397-3722. DOI10.1038/s41612-020-00143-w. (anglicky)
AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN2041-1723. DOI10.1038/s41467-020-20781-1. PMID33479205. (anglicky)
ISAKSEN, Ketil; NORDLI, Øyvind; IVANOV, Boris. Exceptional warming over the Barents area. Scientific Reports. 2022-06-15, roč. 12, čís. 1, s. 9371. Dostupné online [cit. 2023-10-14]. ISSN2045-2322. DOI10.1038/s41598-022-13568-5. (anglicky)
ACOSTA NAVARRO, J. C.; VARMA, V.; RIIPINEN, I. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience. 2016-04, roč. 9, čís. 4, s. 277–281. Dostupné online [cit. 2023-10-14]. ISSN1752-0908. DOI10.1038/ngeo2673. (anglicky)
GREGORY, Jonathan M.; HUYBRECHTS, Philippe; RAPER, Sarah C. B. Threatened loss of the Greenland ice-sheet. Nature. 2004-04, roč. 428, čís. 6983, s. 616–616. Dostupné online [cit. 2023-10-14]. ISSN1476-4687. DOI10.1038/428616a. (anglicky)
MYERS-SMITH, Isla H.; KERBY, Jeffrey T.; PHOENIX, Gareth K. Complexity revealed in the greening of the Arctic. Nature Climate Change. 2020-02, roč. 10, čís. 2, s. 106–117. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0688-1. (anglicky)
BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-18479-5. PMID32963240. (anglicky)
WITZE, Alexandra. The Arctic is burning like never before — and that’s bad news for climate change. Nature. 2020-09-10, roč. 585, čís. 7825, s. 336–337. Dostupné online [cit. 2023-10-15]. DOI10.1038/d41586-020-02568-y. (anglicky)
DOUGLAS, Thomas A.; TURETSKY, Merritt R.; KOVEN, Charles D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Climate and Atmospheric Science. 2020-07-24, roč. 3, čís. 1, s. 1–7. Dostupné online [cit. 2023-10-15]. ISSN2397-3722. DOI10.1038/s41612-020-0130-4. (anglicky)
PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-20102-6. PMID33303752. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; LEIFER, Ira. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014-01, roč. 7, čís. 1, s. 64–70. Dostupné online [cit. 2023-10-15]. ISSN1752-0908. DOI10.1038/ngeo2007. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/ncomms15872. PMID28639616. (anglicky)
BLACKPORT, Russell; SCREEN, James A.; VAN DER WIEL, Karin. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change. 2019-09, roč. 9, čís. 9, s. 697–704. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0551-4. (anglicky)
SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-022-28283-y. PMID35132058. (anglicky)
nih.gov
ncbi.nlm.nih.gov
CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN1573-1480. DOI10.1007/s10584-021-03052-w. PMID34720262. (anglicky)
AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN2041-1723. DOI10.1038/s41467-020-20781-1. PMID33479205. (anglicky)
BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN1654-7209. DOI10.1007/s13280-019-01161-6. PMID30929249. (anglicky)
BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-18479-5. PMID32963240. (anglicky)
ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN2193-1801. DOI10.1186/2193-1801-3-157. PMID24790813.
JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aao1167. PMID30009255. (anglicky)
NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN1432-1939. DOI10.1007/s00442-009-1556-x. PMID20084398. (anglicky)
PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-20102-6. PMID33303752. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2103081118. PMID34400500. (anglicky)
KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2117308119. PMID35588449. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2201191119. PMID35588452. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/ncomms15872. PMID28639616. (anglicky)
BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aay2880. PMID32128402. (anglicky)
SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-022-28283-y. PMID35132058. (anglicky)
noaa.gov
arctic.noaa.gov
Rapid and pronounced warming continues to drive the evolution of the Arctic environment [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
Arctic warming, ice melt 'unprecedented' in at least the past 1,500 years [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
Arctic Report Card: Update for 2017; Arctic shows no sign of returning to reliably frozen region of recent past decades [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
KIEST, Kristina. Surface Air Temperature [online]. 2020-10-01 [cit. 2023-10-14]. Dostupné online. (anglicky)
KIEST, Kristina. Walruses in a Time of Climate Change [online]. 2016-07-14 [cit. 2023-10-15]. Dostupné online. (anglicky)
KIEST, Kristina. Permafrost and the Global Carbon Cycle [online]. 2019-10-31 [cit. 2023-10-15]. Dostupné online. (anglicky)
npr.org
WEBSTER, Melinda. Ice in the Arctic is melting even faster than scientists expected, study finds. npr. Dostupné online.
nsidc.org
Science of Sea Ice. National Snow and Ice Data Center [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
Arctic sea ice extent remains low; 2009 sees third-lowest mark. National Snow and Ice Data Center [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
BRODER, John M.; REVKIN, Andrew C. Warming Is Seen as Wiping Out Most Polar Bears. The New York Times. 2007-09-08. Dostupné online [cit. 2023-10-15]. ISSN0362-4331. (anglicky)
osti.gov
HILL, Christopher. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report. [s.l.]: [s.n.] Dostupné online. DOI10.2172/1184378. (English) DOI: 10.2172/1184378.
phys.org
LABORATORY, Los Alamos National. Arctic temperatures are increasing four times faster than global warming. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
DESHAYES, Pierre-Henry. Arctic warming three times faster than the planet, report warns. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
STOCKHOLM, Ivan Couronne With Pia Ohlin In. Arctic summer sea ice second lowest on record: US researchers. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky)
REICH, Katharine; CALIFORNIA, University of; ANGELES, Los. Arctic Ocean could be ice-free for part of the year as soon as 2044. phys.org [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
pnas.org
DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2103081118. PMID34400500. (anglicky)
KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2117308119. PMID35588449. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2201191119. PMID35588452. (anglicky)
science.org
VOOSEN, Paul. The Arctic is warming four times faster than the rest of the world. Science. 2021-12-14. Dostupné online.
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aao1167. PMID30009255. (anglicky)
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aay2880. PMID32128402. (anglicky)
VOOSEN, Paul. Landmark study casts doubt on controversial theory linking melting Arctic to severe winter weather. Science [online]. 2021-05-12 [cit. 2023-10-15]. Dostupné online.
sciencedaily.com
Warming Greenland ice sheet passes point of no return. ScienceDaily [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
Protection For Polar Bears Urged By National Wildlife Federation. ScienceDaily [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
ZHANG, Qiang; WAN, Zheng; HEMMINGS, Bill. Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production. 2019-12-20, roč. 241, s. 118261. Dostupné online [cit. 2023-10-14]. ISSN0959-6526. DOI10.1016/j.jclepro.2019.118261.
FISHER, David; ZHENG, James; BURGESS, David. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change. 2012-03-01, roč. 84-85, čís. Perspectives on Climate in Medieval Time, s. 3–7. Dostupné online [cit. 2023-10-14]. ISSN0921-8181. DOI10.1016/j.gloplacha.2011.06.005.
BUTT, Faisal A; DRANGE, Helge; ELVERHØI, Anders. Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results. Quaternary Science Reviews. 2002-08-01, roč. 21, čís. 14, s. 1643–1660. Dostupné online [cit. 2023-10-15]. ISSN0277-3791. DOI10.1016/S0277-3791(02)00018-5.
LI, Qi; HU, Weifang; LI, Linfeng. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of The Total Environment. 2023-01-10, roč. 855, s. 158710. Dostupné online [cit. 2023-10-15]. ISSN0048-9697. DOI10.1016/j.scitotenv.2022.158710.
NELSON, Daniel. The Gulf Stream May Be Weaker Than It Has Been In 1600 Years, Could Exacerbate Climate Change. Science Trends. 2018-04-19. Dostupné online [cit. 2023-10-15]. DOI10.31988/SciTrends.15937. (anglicky)
stimson.org
MECHANIX, Web. Evolution of Arctic Territorial Claims and Agreements: A Timeline (1903-Present) • Stimson Center [online]. 2013-09-15 [cit. 2023-10-15]. Dostupné online. (anglicky)
theconversation.com
DRUCKENMILLER, Matthew L.; THOMAN, Rick; MOON, Twila. 2021 Arctic Report Card reveals a (human) story of cascading disruptions, extreme events and global connections. The Conversation [online]. 2021-12-14 [cit. 2023-10-14]. Dostupné online. (anglicky)
theenergymix.com
BEER, Mitchell. End of Arctic sea ice by 2035 possible, study finds [online]. 2020-08-11 [cit. 2023-10-15]. Dostupné online. (anglicky)
theguardian.com
CHAO-FONG, Léonie. ‘Drastic’ rise in high Arctic lightning has scientists worried. The Guardian. 2022-01-07. Dostupné online [cit. 2023-10-14]. ISSN0261-3077. (anglicky)
CARRINGTON, Damian; EDITOR, Damian Carrington Environment. New data reveals extraordinary global heating in the Arctic. The Guardian. 2022-06-15. Dostupné online [cit. 2023-10-14]. ISSN0261-3077. (anglicky)
ECKEL, Mike. Russia says tests back claim to Arctic ridge. The Guardian. 2007-09-21. Dostupné online [cit. 2023-10-15]. ISSN0261-3077. (anglicky)
theobserver-qiaa.org
Territorial Claims in the Arctic Circle: An Explainer. The Observer [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
ucalgary.ca
journalhosting.ucalgary.ca
LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic25. (anglicky)
FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic69833. (anglicky)
unep.org
ENVIRONMENT, U. N. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. UNEP - UN Environment Programme [online]. 2022-02-22 [cit. 2023-10-14]. Dostupné online. (anglicky)
vice.com
LUNAU, Kate. A Top-Secret US Military Base Will Melt Out of the Greenland Ice Sheet [online]. 2018-02-20 [cit. 2023-10-15]. Dostupné online. (anglicky)
washingtonpost.com
HAVEY, C. How cleaner air could actually make global warming worse. Washington Post. 2016-03-14. Dostupné online.
web.archive.org
STANLEY, Michael. Gas flaring: An industry practice faces increasing global attention [online]. Arctic Council [cit. 2023-10-14]. Dostupné v archivu pořízeném z originálu dne 2019-02-15.
Record Arctic sea ice minimum confirmed by NSIDC. MetOffice UK. 2012-09-21. Dostupné online.
Arctic summer sea ice loss may not 'tip' over the edge. Environmental Research Web. 2009-01-30. Dostupné online.
MASTERS, Jeff. Arctic sea ice volume now one-fifth its 1979 level. wunderground.com. 2013-02-19. Dostupné online.
Uncertainty in Climate Model Projections of Arctic Sea Ice Decline: An Evaluation Relevant to Polar Bears. U.S. Department of the Interior, U.S. Geological Survey. Center for Climate Research, Atmospheric and Oceanic Sciences Department, University of Wisconsin – Madison. Dostupné online.
wiley.com
doi.wiley.com
FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-14]. DOI10.1029/2012GL051000. (anglicky)
MILLER, Gifford H.; LEHMAN, Scott J.; REFSNIDER, Kurt A. Unprecedented recent summer warmth in Arctic Canada: UNPRECEDENTED ARCTIC WARMTH. Geophysical Research Letters. 2013-11-16, roč. 40, čís. 21, s. 5745–5751. Dostupné online [cit. 2023-10-14]. DOI10.1002/2013GL057188. (anglicky)
CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2009GL038777. (anglicky)
LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2005GL025080. (anglicky)
STROEVE, Julienne; HOLLAND, Marika M.; MEIER, Walt. Arctic sea ice decline: Faster than forecast: ARCTIC ICE LOSS-FASTER THAN FORECAST. Geophysical Research Letters. 2007-05-16, roč. 34, čís. 9. Dostupné online [cit. 2023-10-14]. DOI10.1029/2007GL029703. (anglicky)
VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2009GL040222. (anglicky)
CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2003GL018680. (anglicky)
SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2005GL022751. (anglicky)
FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-15]. DOI10.1029/2012GL051000. (anglicky)
agupubs.onlinelibrary.wiley.com
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082914. (anglicky)
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082791. (anglicky)
STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1002/2013GL058951. (anglicky)
OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN0096-3941. DOI10.1029/2005EO340001. (anglicky)
onlinelibrary.wiley.com
TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/j.1365-2486.2006.01128.x. (anglicky)
DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/gcb.13381. (anglicky)
WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN0019-1019. DOI10.1111/ibi.12571. (anglicky)
besjournals.onlinelibrary.wiley.com
MYERS‐SMITH, Isla H.; HIK, David S. Climate warming as a driver of tundra shrubline advance. Journal of Ecology. 2018-03, roč. 106, čís. 2, s. 547–560. Dostupné online [cit. 2023-10-15]. ISSN0022-0477. DOI10.1111/1365-2745.12817. (anglicky)
KESSLER, Louise. ESTIMATING THE ECONOMIC IMPACT OF THE PERMAFROST CARBON FEEDBACK. Climate Change Economics. 2017-05, roč. 08, čís. 02, s. 1750008. Dostupné online [cit. 2023-10-14]. ISSN2010-0078. DOI10.1142/S2010007817500087. (anglicky)
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
RANTANEN, Mika; KARPECHKO, Alexey Yu; LIPPONEN, Antti. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022-08-11, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2662-4435. DOI10.1038/s43247-022-00498-3. (anglicky)
CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN1573-1480. DOI10.1007/s10584-021-03052-w. PMID34720262. (anglicky)
YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN2072-4292. DOI10.3390/rs13142813. (anglicky)
QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-8-1723-2008. (English)
CHAO-FONG, Léonie. ‘Drastic’ rise in high Arctic lightning has scientists worried. The Guardian. 2022-01-07. Dostupné online [cit. 2023-10-14]. ISSN0261-3077. (anglicky)
SINGH, Hansi A.; POLVANI, Lorenzo M. Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science. 2020-10-08, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN2397-3722. DOI10.1038/s41612-020-00143-w. (anglicky)
AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN2041-1723. DOI10.1038/s41467-020-20781-1. PMID33479205. (anglicky)
PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082914. (anglicky)
ISAKSEN, Ketil; NORDLI, Øyvind; IVANOV, Boris. Exceptional warming over the Barents area. Scientific Reports. 2022-06-15, roč. 12, čís. 1, s. 9371. Dostupné online [cit. 2023-10-14]. ISSN2045-2322. DOI10.1038/s41598-022-13568-5. (anglicky)
CARRINGTON, Damian; EDITOR, Damian Carrington Environment. New data reveals extraordinary global heating in the Arctic. The Guardian. 2022-06-15. Dostupné online [cit. 2023-10-14]. ISSN0261-3077. (anglicky)
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2022GL099371. (anglicky)
ACOSTA NAVARRO, J. C.; VARMA, V.; RIIPINEN, I. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience. 2016-04, roč. 9, čís. 4, s. 277–281. Dostupné online [cit. 2023-10-14]. ISSN1752-0908. DOI10.1038/ngeo2673. (anglicky)
CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2009GL038777. (anglicky)
STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN1680-7316. DOI10.5194/acp-13-8833-2013. (English)
ZHANG, Qiang; WAN, Zheng; HEMMINGS, Bill. Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production. 2019-12-20, roč. 241, s. 118261. Dostupné online [cit. 2023-10-14]. ISSN0959-6526. DOI10.1016/j.jclepro.2019.118261.
HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2019GL082791. (anglicky)
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
FISHER, David; ZHENG, James; BURGESS, David. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change. 2012-03-01, roč. 84-85, čís. Perspectives on Climate in Medieval Time, s. 3–7. Dostupné online [cit. 2023-10-14]. ISSN0921-8181. DOI10.1016/j.gloplacha.2011.06.005.
STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1002/2013GL058951. (anglicky)
LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN0094-8276. DOI10.1029/2005GL025080. (anglicky)
PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN1994-0416. DOI10.5194/tc-12-433-2018. (English)
YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN1573-0840. DOI10.1007/s11069-020-04064-y. (anglicky)
SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0075.1. (EN)
GREGORY, Jonathan M.; HUYBRECHTS, Philippe; RAPER, Sarah C. B. Threatened loss of the Greenland ice-sheet. Nature. 2004-04, roč. 428, čís. 6983, s. 616–616. Dostupné online [cit. 2023-10-14]. ISSN1476-4687. DOI10.1038/428616a. (anglicky)
ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN1520-0493. DOI10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN)
OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN0096-3941. DOI10.1029/2005EO340001. (anglicky)
BUTT, Faisal A; DRANGE, Helge; ELVERHØI, Anders. Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results. Quaternary Science Reviews. 2002-08-01, roč. 21, čís. 14, s. 1643–1660. Dostupné online [cit. 2023-10-15]. ISSN0277-3791. DOI10.1016/S0277-3791(02)00018-5.
VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2009GL040222. (anglicky)
CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2003GL018680. (anglicky)
BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN1654-7209. DOI10.1007/s13280-019-01161-6. PMID30929249. (anglicky)
MYERS-SMITH, Isla H.; KERBY, Jeffrey T.; PHOENIX, Gareth K. Complexity revealed in the greening of the Arctic. Nature Climate Change. 2020-02, roč. 10, čís. 2, s. 106–117. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0688-1. (anglicky)
BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-18479-5. PMID32963240. (anglicky)
MYERS‐SMITH, Isla H.; HIK, David S. Climate warming as a driver of tundra shrubline advance. Journal of Ecology. 2018-03, roč. 106, čís. 2, s. 547–560. Dostupné online [cit. 2023-10-15]. ISSN0022-0477. DOI10.1111/1365-2745.12817. (anglicky)
ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN1664-221X. DOI10.1007/s00035-014-0133-z. (anglicky)
TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/j.1365-2486.2006.01128.x. (anglicky)
ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN2193-1801. DOI10.1186/2193-1801-3-157. PMID24790813.
LORANTY, Michael M.; GOETZ, Scott J.; BECK, Pieter S. A. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters. 2011-05, roč. 6, čís. 2, s. 024014. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/6/2/024014. (anglicky)
BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-0318.1. (EN)
JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aao1167. PMID30009255. (anglicky)
MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/aa7989.
LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic25. (anglicky)
BRODER, John M.; REVKIN, Andrew C. Warming Is Seen as Wiping Out Most Polar Bears. The New York Times. 2007-09-08. Dostupné online [cit. 2023-10-15]. ISSN0362-4331. (anglicky)
DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN1354-1013. DOI10.1111/gcb.13381. (anglicky)
WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN0019-1019. DOI10.1111/ibi.12571. (anglicky)
DOUGLAS, Thomas A.; TURETSKY, Merritt R.; KOVEN, Charles D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Climate and Atmospheric Science. 2020-07-24, roč. 3, čís. 1, s. 1–7. Dostupné online [cit. 2023-10-15]. ISSN2397-3722. DOI10.1038/s41612-020-0130-4. (anglicky)
SAYEDI, Sayedeh Sara; ABBOTT, Benjamin W.; THORNTON, Brett F. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters. 2020-12, roč. 15, čís. 12, s. 124075. Dostupné online [cit. 2023-10-15]. ISSN1748-9326. DOI10.1088/1748-9326/abcc29. (anglicky)
HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN1726-4170. DOI10.5194/bg-11-6573-2014. (English)
NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN1432-1939. DOI10.1007/s00442-009-1556-x. PMID20084398. (anglicky)
SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN1525-3244. DOI10.1641/b580807.
LI, Qi; HU, Weifang; LI, Linfeng. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of The Total Environment. 2023-01-10, roč. 855, s. 158710. Dostupné online [cit. 2023-10-15]. ISSN0048-9697. DOI10.1016/j.scitotenv.2022.158710.
PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-020-20102-6. PMID33303752. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2103081118. PMID34400500. (anglicky)
KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2117308119. PMID35588449. (anglicky)
DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN0027-8424. DOI10.1073/pnas.2201191119. PMID35588452. (anglicky)
ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN0036-8075. DOI10.1126/science.abn7950. (anglicky)
SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN0094-8276. DOI10.1029/2005GL022751. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; LEIFER, Ira. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014-01, roč. 7, čís. 1, s. 64–70. Dostupné online [cit. 2023-10-15]. ISSN1752-0908. DOI10.1038/ngeo2007. (anglicky)
SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/ncomms15872. PMID28639616. (anglicky)
BLACKPORT, Russell; SCREEN, James A.; VAN DER WIEL, Karin. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change. 2019-09, roč. 9, čís. 9, s. 697–704. Dostupné online [cit. 2023-10-15]. ISSN1758-6798. DOI10.1038/s41558-019-0551-4. (anglicky)
BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN2375-2548. DOI10.1126/sciadv.aay2880. PMID32128402. (anglicky)
STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN0894-8755. DOI10.1175/JCLI-D-19-1005.1.
SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN2041-1723. DOI10.1038/s41467-022-28283-y. PMID35132058. (anglicky)
ECKEL, Mike. Russia says tests back claim to Arctic ridge. The Guardian. 2007-09-21. Dostupné online [cit. 2023-10-15]. ISSN0261-3077. (anglicky)
BERKES, Fikret; JOLLY, Dyanna. Adapting to Climate Change: Social-Ecological Resilience in a Canadian Western Arctic Community. Conservation Ecology. 2001-12-20, roč. 5, čís. 2. Dostupné online [cit. 2023-10-15]. ISSN1195-5449. DOI10.5751/ES-00342-050218. (anglicky)
FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN1923-1245. DOI10.14430/arctic69833. (anglicky)
worldscientific.com
KESSLER, Louise. ESTIMATING THE ECONOMIC IMPACT OF THE PERMAFROST CARBON FEEDBACK. Climate Change Economics. 2017-05, roč. 08, čís. 02, s. 1750008. Dostupné online [cit. 2023-10-14]. ISSN2010-0078. DOI10.1142/S2010007817500087. (anglicky)
yale.edu
e360.yale.edu
Arctic Roamers: The Move of Southern Species into Far North. Yale E360 [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)