Změna klimatu v Arktidě (Czech Wikipedia)

Analysis of information sources in references of the Wikipedia article "Změna klimatu v Arktidě" in Czech language version.

refsWebsite
Global rank Czech rank
2nd place
4th place
5th place
3rd place
222nd place
83rd place
234th place
72nd place
4th place
8th place
212th place
245th place
149th place
80th place
1,160th place
346th place
1,283rd place
26th place
1st place
1st place
4,162nd place
3,196th place
20th place
48th place
7,281st place
2,403rd place
1,190th place
557th place
12th place
39th place
low place
low place
1,293rd place
205th place
2,204th place
2,737th place
6th place
10th place
low place
low place
993rd place
481st place
3,395th place
4,153rd place
low place
2,847th place
low place
low place
928th place
1,272nd place
3,624th place
8,487th place
305th place
249th place
2,912th place
482nd place
low place
low place
204th place
352nd place
low place
low place
34th place
133rd place
low place
low place
1,349th place
2,132nd place
92nd place
367th place
8th place
28th place
low place
low place
75th place
115th place
175th place
768th place
193rd place
544th place
8,864th place
low place
565th place
738th place
7th place
43rd place
2,036th place
2,683rd place
low place
low place
5,893rd place
low place
3,158th place
1,604th place
low place
low place
low place
low place
low place
low place
low place
low place

aip.org

pubs.aip.org

amap.no

  • AMAP Arctic Climate Change Update 2021: Key Trends and Impacts | AMAP. S. vii. www.amap.no [online]. [cit. 2023-10-14]. S. vii. Dostupné online. (anglicky) 

ametsoc.org

journals.ametsoc.org

  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN 1520-0493. DOI 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN) 
  • BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0318.1. (EN) 
  • STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-1005.1. 

archive.org

arctic-council.org

  • STANLEY, Michael. Gas flaring: An industry practice faces increasing global attention [online]. Arctic Council [cit. 2023-10-14]. Dostupné v archivu pořízeném z originálu dne 2019-02-15. 

bbc.co.uk

news.bbc.co.uk

  • Earth - melting in the heat?. news.bbc.co.uk. 2007-05-18. Dostupné online [cit. 2023-10-14]. (anglicky) 

bbc.com

  • Climate change: Wildfire smoke linked to Arctic melting. BBC News. 2022-03-18. Dostupné online [cit. 2023-10-14]. (anglicky) 
  • Arctic Circle sees 'highest-ever' recorded temperatures. BBC News. 2020-06-22. Dostupné online [cit. 2023-10-14]. (anglicky) 
  • Climate change: Siberian heatwave 'clear evidence' of warming. BBC News. 2020-07-15. Dostupné online [cit. 2023-10-14]. (anglicky) 
  • Climate change: Warmth shatters section of Greenland ice shelf. BBC News. 2020-09-14. Dostupné online [cit. 2023-10-15]. (anglicky) 

cambridge.org

climatetippingpoints.info

  • DVDMCKAY. Exceeding 1.5 °C global warming could trigger multiple climate tipping points – paper explainer [online]. 2022-09-09 [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • DVDMCKAY. Exceeding 1.5 °C global warming could trigger multiple climate tipping points – paper explainer [online]. 2022-09-09 [cit. 2023-10-15]. Dostupné online. (anglicky) 

copernicus.org

acp.copernicus.org

  • QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-8-1723-2008. (English) 
  • STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-13-8833-2013. (English) 

tc.copernicus.org

  • PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN 1994-0416. DOI 10.5194/tc-12-433-2018. (English) 

bg.copernicus.org

  • HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN 1726-4170. DOI 10.5194/bg-11-6573-2014. (English) 

doi.org

dx.doi.org

  • KESSLER, Louise. ESTIMATING THE ECONOMIC IMPACT OF THE PERMAFROST CARBON FEEDBACK. Climate Change Economics. 2017-05, roč. 08, čís. 02, s. 1750008. Dostupné online [cit. 2023-10-14]. ISSN 2010-0078. DOI 10.1142/S2010007817500087. (anglicky) 
  • ARVELO, Juan. An Under-Ice Arctic Geophysical Exploration Sonar System Concept To Resolve International Territorial Claims. pubs.aip.org [online]. [cit. 2023-10-14]. Dostupné online. DOI 10.1121/1.3626896. 
  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • Atlantic Ocean circulation shows "exceptional" slowdown. pubs.aip.org [online]. [cit. 2023-10-14]. Dostupné online. DOI 10.1063/pt.5.028751. 
  • FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-14]. DOI 10.1029/2012GL051000. (anglicky) 
  • RANTANEN, Mika; KARPECHKO, Alexey Yu; LIPPONEN, Antti. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022-08-11, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN 2662-4435. DOI 10.1038/s43247-022-00498-3. (anglicky) 
  • CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN 1573-1480. DOI 10.1007/s10584-021-03052-w. PMID 34720262. (anglicky) 
  • PRZYBYLAK, Rajmund. Recent air-temperature changes in the Arctic. Annals of Glaciology. 2007-01, roč. 46, s. 316–324. Dostupné online [cit. 2023-10-14]. ISSN 0260-3055. DOI 10.3189/172756407782871666. (anglicky) 
  • YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN 2072-4292. DOI 10.3390/rs13142813. (anglicky) 
  • QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-8-1723-2008. (English) 
  • MILLER, Gifford H.; LEHMAN, Scott J.; REFSNIDER, Kurt A. Unprecedented recent summer warmth in Arctic Canada: UNPRECEDENTED ARCTIC WARMTH. Geophysical Research Letters. 2013-11-16, roč. 40, čís. 21, s. 5745–5751. Dostupné online [cit. 2023-10-14]. DOI 10.1002/2013GL057188. (anglicky) 
  • DAI, Aiguo; LUO, Dehai; SONG, Mirong. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications. 2019-01-10, roč. 10, čís. 1, s. 121. Dostupné online [cit. 2023-10-14]. ISSN 2041-1723. DOI 10.1038/s41467-018-07954-9. PMID 30631051. (anglicky) 
  • SINGH, Hansi A.; POLVANI, Lorenzo M. Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science. 2020-10-08, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN 2397-3722. DOI 10.1038/s41612-020-00143-w. (anglicky) 
  • AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN 2041-1723. DOI 10.1038/s41467-020-20781-1. PMID 33479205. (anglicky) 
  • PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082914. (anglicky) 
  • ISAKSEN, Ketil; NORDLI, Øyvind; IVANOV, Boris. Exceptional warming over the Barents area. Scientific Reports. 2022-06-15, roč. 12, čís. 1, s. 9371. Dostupné online [cit. 2023-10-14]. ISSN 2045-2322. DOI 10.1038/s41598-022-13568-5. (anglicky) 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • ACOSTA NAVARRO, J. C.; VARMA, V.; RIIPINEN, I. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience. 2016-04, roč. 9, čís. 4, s. 277–281. Dostupné online [cit. 2023-10-14]. ISSN 1752-0908. DOI 10.1038/ngeo2673. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2009GL038777. (anglicky) 
  • QI, Ling; WANG, Shuxiao. Sources of black carbon in the atmosphere and in snow in the Arctic. Science of The Total Environment. 2019-11-15, roč. 691, s. 442–454. Dostupné online [cit. 2023-10-14]. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2019.07.073. 
  • STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-13-8833-2013. (English) 
  • ZHU, Chunmao; KANAYA, Yugo; TAKIGAWA, Masayuki. Flexpart v10.1 simulation of source contributions to Arctic black carbon. doi.org [online]. 2019-09-24 [cit. 2023-10-14]. Dostupné online. DOI 10.5194/acp-2019-590. 
  • ZHANG, Qiang; WAN, Zheng; HEMMINGS, Bill. Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production. 2019-12-20, roč. 241, s. 118261. Dostupné online [cit. 2023-10-14]. ISSN 0959-6526. DOI 10.1016/j.jclepro.2019.118261. 
  • HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082791. (anglicky) 
  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • FISHER, David; ZHENG, James; BURGESS, David. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change. 2012-03-01, roč. 84-85, čís. Perspectives on Climate in Medieval Time, s. 3–7. Dostupné online [cit. 2023-10-14]. ISSN 0921-8181. DOI 10.1016/j.gloplacha.2011.06.005. 
  • STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1002/2013GL058951. (anglicky) 
  • LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2005GL025080. (anglicky) 
  • STROEVE, Julienne; HOLLAND, Marika M.; MEIER, Walt. Arctic sea ice decline: Faster than forecast: ARCTIC ICE LOSS-FASTER THAN FORECAST. Geophysical Research Letters. 2007-05-16, roč. 34, čís. 9. Dostupné online [cit. 2023-10-14]. DOI 10.1029/2007GL029703. (anglicky) 
  • COMISO, Josefino C.; PARKINSON, Claire L.; GERSTEN, Robert. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters. 2008-01-03, roč. 35, čís. 1. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2007GL031972. (anglicky) 
  • PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN 1994-0416. DOI 10.5194/tc-12-433-2018. (English) 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • GREGORY, Jonathan M.; HUYBRECHTS, Philippe; RAPER, Sarah C. B. Threatened loss of the Greenland ice-sheet. Nature. 2004-04, roč. 428, čís. 6983, s. 616–616. Dostupné online [cit. 2023-10-14]. ISSN 1476-4687. DOI 10.1038/428616a. (anglicky) 
  • ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN 1520-0493. DOI 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN) 
  • OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN 0096-3941. DOI 10.1029/2005EO340001. (anglicky) 
  • BUTT, Faisal A; DRANGE, Helge; ELVERHØI, Anders. Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results. Quaternary Science Reviews. 2002-08-01, roč. 21, čís. 14, s. 1643–1660. Dostupné online [cit. 2023-10-15]. ISSN 0277-3791. DOI 10.1016/S0277-3791(02)00018-5. 
  • VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2009GL040222. (anglicky) 
  • CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2003GL018680. (anglicky) 
  • BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN 1654-7209. DOI 10.1007/s13280-019-01161-6. PMID 30929249. (anglicky) 
  • GUTMAN, G. Garik. Vegetation indices from AVHRR: An update and future prospects. Remote Sensing of Environment. 1991-02-01, roč. 35, čís. 2, s. 121–136. Dostupné online [cit. 2023-10-15]. ISSN 0034-4257. DOI 10.1016/0034-4257(91)90005-Q. 
  • MYERS-SMITH, Isla H.; KERBY, Jeffrey T.; PHOENIX, Gareth K. Complexity revealed in the greening of the Arctic. Nature Climate Change. 2020-02, roč. 10, čís. 2, s. 106–117. Dostupné online [cit. 2023-10-15]. ISSN 1758-6798. DOI 10.1038/s41558-019-0688-1. (anglicky) 
  • BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-020-18479-5. PMID 32963240. (anglicky) 
  • MARTIN, Andrew; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach.. In: [s.l.]: Open Science Centre, University of Jyväskylä, 2018. Dostupné online. DOI 10.17011/conference/eccb2018/108642.
  • MYERS‐SMITH, Isla H.; HIK, David S. Climate warming as a driver of tundra shrubline advance. Journal of Ecology. 2018-03, roč. 106, čís. 2, s. 547–560. Dostupné online [cit. 2023-10-15]. ISSN 0022-0477. DOI 10.1111/1365-2745.12817. (anglicky) 
  • ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN 1664-221X. DOI 10.1007/s00035-014-0133-z. (anglicky) 
  • TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/j.1365-2486.2006.01128.x. (anglicky) 
  • ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN 2193-1801. DOI 10.1186/2193-1801-3-157. PMID 24790813. 
  • LORANTY, Michael M.; GOETZ, Scott J.; BECK, Pieter S. A. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters. 2011-05, roč. 6, čís. 2, s. 024014. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/6/2/024014. (anglicky) 
  • BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0318.1. (EN) 
  • JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aao1167. PMID 30009255. (anglicky) 
  • MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/aa7989. 
  • WITZE, Alexandra. The Arctic is burning like never before — and that’s bad news for climate change. Nature. 2020-09-10, roč. 585, čís. 7825, s. 336–337. Dostupné online [cit. 2023-10-15]. DOI 10.1038/d41586-020-02568-y. (anglicky) 
  • LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic25. (anglicky) 
  • WU, Qiang. Satellite observations of unprecedented phytoplankton blooms in the Southern Ocean. doi.org [online]. 2019-12-24 [cit. 2023-10-15]. Dostupné online. DOI 10.5194/tc-2019-282-sc1. 
  • DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/gcb.13381. (anglicky) 
  • WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN 0019-1019. DOI 10.1111/ibi.12571. (anglicky) 
  • DOUGLAS, Thomas A.; TURETSKY, Merritt R.; KOVEN, Charles D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Climate and Atmospheric Science. 2020-07-24, roč. 3, čís. 1, s. 1–7. Dostupné online [cit. 2023-10-15]. ISSN 2397-3722. DOI 10.1038/s41612-020-0130-4. (anglicky) 
  • SAYEDI, Sayedeh Sara; ABBOTT, Benjamin W.; THORNTON, Brett F. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters. 2020-12, roč. 15, čís. 12, s. 124075. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/abcc29. (anglicky) 
  • HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN 1726-4170. DOI 10.5194/bg-11-6573-2014. (English) 
  • NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN 1432-1939. DOI 10.1007/s00442-009-1556-x. PMID 20084398. (anglicky) 
  • SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN 1525-3244. DOI 10.1641/b580807. 
  • LI, Qi; HU, Weifang; LI, Linfeng. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of The Total Environment. 2023-01-10, roč. 855, s. 158710. Dostupné online [cit. 2023-10-15]. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2022.158710. 
  • PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-020-20102-6. PMID 33303752. (anglicky) 
  • DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2103081118. PMID 34400500. (anglicky) 
  • KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2117308119. PMID 35588449. (anglicky) 
  • DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2201191119. PMID 35588452. (anglicky) 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2005GL022751. (anglicky) 
  • SHAKHOVA, Natalia; SEMILETOV, Igor; LEIFER, Ira. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014-01, roč. 7, čís. 1, s. 64–70. Dostupné online [cit. 2023-10-15]. ISSN 1752-0908. DOI 10.1038/ngeo2007. (anglicky) 
  • SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/ncomms15872. PMID 28639616. (anglicky) 
  • HILL, Christopher. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report. [s.l.]: [s.n.] Dostupné online. DOI 10.2172/1184378. (English) DOI: 10.2172/1184378. 
  • NELSON, Daniel. The Gulf Stream May Be Weaker Than It Has Been In 1600 Years, Could Exacerbate Climate Change. Science Trends. 2018-04-19. Dostupné online [cit. 2023-10-15]. DOI 10.31988/SciTrends.15937. (anglicky) 
  • VAUGHAN, Adam. Arctic ice loss could trigger huge extra global warming. New Scientist. 2020-11-07, roč. 248, čís. 3307, s. 21. Dostupné online [cit. 2023-10-15]. ISSN 0262-4079. DOI 10.1016/S0262-4079(20)31956-4. 
  • CHEN, Xi; AL., Et. Supplemental Material: Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. gsapubs.figshare.com. 2020-11-12. Dostupné online [cit. 2023-10-15]. DOI 10.1130/GEOL.S.13232360.v1. (anglicky) 
  • FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-15]. DOI 10.1029/2012GL051000. (anglicky) 
  • ZIELINSKI, Gregory A.; MERSHON, Grant R. Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene–Holocene transition. GSA Bulletin [online]. 1997 [cit. 2023-10-15]. Dostupné online. DOI 10.1130/0016-7606(1997)109%3C0547:piotim%3E2.3.co;2. 
  • BLACKPORT, Russell; SCREEN, James A.; VAN DER WIEL, Karin. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change. 2019-09, roč. 9, čís. 9, s. 697–704. Dostupné online [cit. 2023-10-15]. ISSN 1758-6798. DOI 10.1038/s41558-019-0551-4. (anglicky) 
  • BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aay2880. PMID 32128402. (anglicky) 
  • STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-1005.1. 
  • SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-022-28283-y. PMID 35132058. (anglicky) 
  • BERKES, Fikret; JOLLY, Dyanna. Adapting to Climate Change: Social-Ecological Resilience in a Canadian Western Arctic Community. Conservation Ecology. 2001-12-20, roč. 5, čís. 2. Dostupné online [cit. 2023-10-15]. ISSN 1195-5449. DOI 10.5751/ES-00342-050218. (anglicky) 
  • FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic69833. (anglicky) 
  • TIMONIN, Andrey. Climate Change in the Arctic and Future Directions for Adaptation: Views From Non-Arctic States. SSRN [online]. [cit. 2023-10-15]. Dostupné online. 

doi.org

  • CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN 1573-1480. DOI 10.1007/s10584-021-03052-w. PMID 34720262. (anglicky) 
  • ZHU, Chunmao; KANAYA, Yugo; TAKIGAWA, Masayuki. Flexpart v10.1 simulation of source contributions to Arctic black carbon. doi.org [online]. 2019-09-24 [cit. 2023-10-14]. Dostupné online. DOI 10.5194/acp-2019-590. 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN 1654-7209. DOI 10.1007/s13280-019-01161-6. PMID 30929249. (anglicky) 
  • ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN 1664-221X. DOI 10.1007/s00035-014-0133-z. (anglicky) 
  • ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN 2193-1801. DOI 10.1186/2193-1801-3-157. PMID 24790813. 
  • MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/aa7989. 
  • WU, Qiang. Satellite observations of unprecedented phytoplankton blooms in the Southern Ocean. doi.org [online]. 2019-12-24 [cit. 2023-10-15]. Dostupné online. DOI 10.5194/tc-2019-282-sc1. 
  • NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN 1432-1939. DOI 10.1007/s00442-009-1556-x. PMID 20084398. (anglicky) 
  • SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN 1525-3244. DOI 10.1641/b580807. 

dw.com

  • Siberia: Where climate change goes extreme – DW – 07/13/2020. dw.com [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 

ecologyandsociety.org

ecowatch.com

  • ROSANE, Olivia. A Siberian Town Just Hit 100 F Degrees [online]. 2020-06-22 [cit. 2023-10-14]. Dostupné online. (anglicky) 

figshare.com

gsapubs.figshare.com

  • CHEN, Xi; AL., Et. Supplemental Material: Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. gsapubs.figshare.com. 2020-11-12. Dostupné online [cit. 2023-10-15]. DOI 10.1130/GEOL.S.13232360.v1. (anglicky) 

geoscienceworld.org

pubs.geoscienceworld.org

illinois.edu

q.sustainability.illinois.edu

  • Oped: The Price of Black Carbon | Q Magazine [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 

insideclimatenews.org

  • BERWYN, Bob. Polar Vortex: How the Jet Stream and Climate Change Bring on Cold Snaps [online]. 2018-02-02 [cit. 2023-10-14]. Dostupné online. (anglicky) 

jyu.fi

jyx.jyu.fi

  • MARTIN, Andrew; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach.. In: [s.l.]: Open Science Centre, University of Jyväskylä, 2018. Dostupné online. DOI 10.17011/conference/eccb2018/108642.

livescience.com

  • MAIN, Douglas. Arctic Temperatures Highest in at Least 44,000 Years. livescience.com [online]. 2013-10-24 [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • PAPPAS, Stephanie Pappas. Nothing will stop Greenland's ice sheet from shrinking now. livescience.com [online]. 2020-08-17 [cit. 2023-10-15]. Dostupné online. (anglicky) 
  • WEISBERGER, Mindy. More Than 200 Reindeer Found Dead in Norway, Starved by Climate Change. livescience.com [online]. 2019-07-29 [cit. 2023-10-15]. Dostupné online. (anglicky) 

mdpi.com

  • YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN 2072-4292. DOI 10.3390/rs13142813. (anglicky) 

nasa.gov

  • Satellites See Unprecedented Greenland Ice Sheet Surface Melt - NASA [online]. [cit. 2023-10-15]. Dostupné online. (anglicky) 

nature.com

nih.gov

ncbi.nlm.nih.gov

noaa.gov

arctic.noaa.gov

  • Rapid and pronounced warming continues to drive the evolution of the Arctic environment [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • Arctic warming, ice melt 'unprecedented' in at least the past 1,500 years [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • Arctic Report Card: Update for 2017; Arctic shows no sign of returning to reliably frozen region of recent past decades [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • KIEST, Kristina. Surface Air Temperature [online]. 2020-10-01 [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • KIEST, Kristina. Walruses in a Time of Climate Change [online]. 2016-07-14 [cit. 2023-10-15]. Dostupné online. (anglicky) 
  • KIEST, Kristina. Terrestrial Permafrost [online]. 2017-10-24 [cit. 2023-10-15]. Dostupné online. (anglicky) 
  • KIEST, Kristina. Permafrost and the Global Carbon Cycle [online]. 2019-10-31 [cit. 2023-10-15]. Dostupné online. (anglicky) 

npr.org

  • WEBSTER, Melinda. Ice in the Arctic is melting even faster than scientists expected, study finds. npr. Dostupné online. 

nsidc.org

  • Science of Sea Ice. National Snow and Ice Data Center [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • Arctic sea ice extent remains low; 2009 sees third-lowest mark. National Snow and Ice Data Center [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • Analysis | Arctic Sea Ice News and Analysis [online]. 2023-10-04 [cit. 2023-10-14]. Dostupné online. (anglicky) 

nunatsiaq.com

  • NEWS, Nunatsiaq; BELL, Jim. New online atlas tracks Nunavut’s centuries-old Inuit trails. Nunatsiaq News [online]. 2014-06-13 [cit. 2023-10-15]. Dostupné online. (anglicky) 

nytimes.com

  • BRODER, John M.; REVKIN, Andrew C. Warming Is Seen as Wiping Out Most Polar Bears. The New York Times. 2007-09-08. Dostupné online [cit. 2023-10-15]. ISSN 0362-4331. (anglicky) 

osti.gov

  • HILL, Christopher. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report. [s.l.]: [s.n.] Dostupné online. DOI 10.2172/1184378. (English) DOI: 10.2172/1184378. 

phys.org

  • LABORATORY, Los Alamos National. Arctic temperatures are increasing four times faster than global warming. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • SERREZE, Mark; CONVERSATION, The. 5 ways the extreme Arctic heat wave follows a disturbing pattern. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • DESHAYES, Pierre-Henry. Arctic warming three times faster than the planet, report warns. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • STOCKHOLM, Ivan Couronne With Pia Ohlin In. Arctic summer sea ice second lowest on record: US researchers. phys.org [online]. [cit. 2023-10-14]. Dostupné online. (anglicky) 
  • REICH, Katharine; CALIFORNIA, University of; ANGELES, Los. Arctic Ocean could be ice-free for part of the year as soon as 2044. phys.org [online]. [cit. 2023-10-15]. Dostupné online. (anglicky) 

pnas.org

  • DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2103081118. PMID 34400500. (anglicky) 
  • KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2117308119. PMID 35588449. (anglicky) 
  • DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2201191119. PMID 35588452. (anglicky) 

science.org

  • VOOSEN, Paul. The Arctic is warming four times faster than the rest of the world. Science. 2021-12-14. Dostupné online. 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aao1167. PMID 30009255. (anglicky) 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aay2880. PMID 32128402. (anglicky) 
  • VOOSEN, Paul. Landmark study casts doubt on controversial theory linking melting Arctic to severe winter weather. Science [online]. 2021-05-12 [cit. 2023-10-15]. Dostupné online. 

sciencedaily.com

  • Warming Greenland ice sheet passes point of no return. ScienceDaily [online]. [cit. 2023-10-15]. Dostupné online. (anglicky) 
  • Protection For Polar Bears Urged By National Wildlife Federation. ScienceDaily [online]. [cit. 2023-10-15]. Dostupné online. (anglicky) 

sciencedirect.com

sciencetrends.com

  • NELSON, Daniel. The Gulf Stream May Be Weaker Than It Has Been In 1600 Years, Could Exacerbate Climate Change. Science Trends. 2018-04-19. Dostupné online [cit. 2023-10-15]. DOI 10.31988/SciTrends.15937. (anglicky) 

stimson.org

  • MECHANIX, Web. Evolution of Arctic Territorial Claims and Agreements: A Timeline (1903-Present) • Stimson Center [online]. 2013-09-15 [cit. 2023-10-15]. Dostupné online. (anglicky) 

theconversation.com

  • DRUCKENMILLER, Matthew L.; THOMAN, Rick; MOON, Twila. 2021 Arctic Report Card reveals a (human) story of cascading disruptions, extreme events and global connections. The Conversation [online]. 2021-12-14 [cit. 2023-10-14]. Dostupné online. (anglicky) 

theenergymix.com

  • BEER, Mitchell. End of Arctic sea ice by 2035 possible, study finds [online]. 2020-08-11 [cit. 2023-10-15]. Dostupné online. (anglicky) 

theguardian.com

  • CHAO-FONG, Léonie. ‘Drastic’ rise in high Arctic lightning has scientists worried. The Guardian. 2022-01-07. Dostupné online [cit. 2023-10-14]. ISSN 0261-3077. (anglicky) 
  • CARRINGTON, Damian; EDITOR, Damian Carrington Environment. New data reveals extraordinary global heating in the Arctic. The Guardian. 2022-06-15. Dostupné online [cit. 2023-10-14]. ISSN 0261-3077. (anglicky) 
  • ECKEL, Mike. Russia says tests back claim to Arctic ridge. The Guardian. 2007-09-21. Dostupné online [cit. 2023-10-15]. ISSN 0261-3077. (anglicky) 

theobserver-qiaa.org

  • Territorial Claims in the Arctic Circle: An Explainer. The Observer [online]. [cit. 2023-10-15]. Dostupné online. (anglicky) 

ucalgary.ca

journalhosting.ucalgary.ca

  • LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic25. (anglicky) 
  • FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic69833. (anglicky) 

unep.org

  • ENVIRONMENT, U. N. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. UNEP - UN Environment Programme [online]. 2022-02-22 [cit. 2023-10-14]. Dostupné online. (anglicky) 

vice.com

  • LUNAU, Kate. A Top-Secret US Military Base Will Melt Out of the Greenland Ice Sheet [online]. 2018-02-20 [cit. 2023-10-15]. Dostupné online. (anglicky) 

washingtonpost.com

  • HAVEY, C. How cleaner air could actually make global warming worse. Washington Post. 2016-03-14. Dostupné online. 

web.archive.org

  • STANLEY, Michael. Gas flaring: An industry practice faces increasing global attention [online]. Arctic Council [cit. 2023-10-14]. Dostupné v archivu pořízeném z originálu dne 2019-02-15. 
  • Record Arctic sea ice minimum confirmed by NSIDC. MetOffice UK. 2012-09-21. Dostupné online. 
  • Arctic summer sea ice loss may not 'tip' over the edge. Environmental Research Web. 2009-01-30. Dostupné online. 
  • MASTERS, Jeff. Arctic sea ice volume now one-fifth its 1979 level. wunderground.com. 2013-02-19. Dostupné online. 
  • Uncertainty in Climate Model Projections of Arctic Sea Ice Decline: An Evaluation Relevant to Polar Bears. U.S. Department of the Interior, U.S. Geological Survey. Center for Climate Research, Atmospheric and Oceanic Sciences Department, University of Wisconsin – Madison. Dostupné online. 

wiley.com

doi.wiley.com

  • FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-14]. DOI 10.1029/2012GL051000. (anglicky) 
  • MILLER, Gifford H.; LEHMAN, Scott J.; REFSNIDER, Kurt A. Unprecedented recent summer warmth in Arctic Canada: UNPRECEDENTED ARCTIC WARMTH. Geophysical Research Letters. 2013-11-16, roč. 40, čís. 21, s. 5745–5751. Dostupné online [cit. 2023-10-14]. DOI 10.1002/2013GL057188. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2009GL038777. (anglicky) 
  • LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2005GL025080. (anglicky) 
  • STROEVE, Julienne; HOLLAND, Marika M.; MEIER, Walt. Arctic sea ice decline: Faster than forecast: ARCTIC ICE LOSS-FASTER THAN FORECAST. Geophysical Research Letters. 2007-05-16, roč. 34, čís. 9. Dostupné online [cit. 2023-10-14]. DOI 10.1029/2007GL029703. (anglicky) 
  • COMISO, Josefino C.; PARKINSON, Claire L.; GERSTEN, Robert. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters. 2008-01-03, roč. 35, čís. 1. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2007GL031972. (anglicky) 
  • VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2009GL040222. (anglicky) 
  • CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2003GL018680. (anglicky) 
  • SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2005GL022751. (anglicky) 
  • FRANCIS, Jennifer A.; VAVRUS, Stephen J. Evidence linking Arctic amplification to extreme weather in mid-latitudes: ARCTIC LINKS TO MID-LATITUDE WEATHER. Geophysical Research Letters. 2012-03-28, roč. 39, čís. 6, s. n/a–n/a. Dostupné online [cit. 2023-10-15]. DOI 10.1029/2012GL051000. (anglicky) 

agupubs.onlinelibrary.wiley.com

  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082914. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082791. (anglicky) 
  • STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1002/2013GL058951. (anglicky) 
  • OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN 0096-3941. DOI 10.1029/2005EO340001. (anglicky) 

onlinelibrary.wiley.com

  • TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/j.1365-2486.2006.01128.x. (anglicky) 
  • DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/gcb.13381. (anglicky) 
  • WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN 0019-1019. DOI 10.1111/ibi.12571. (anglicky) 

besjournals.onlinelibrary.wiley.com

wired.com

worldcat.org

  • KESSLER, Louise. ESTIMATING THE ECONOMIC IMPACT OF THE PERMAFROST CARBON FEEDBACK. Climate Change Economics. 2017-05, roč. 08, čís. 02, s. 1750008. Dostupné online [cit. 2023-10-14]. ISSN 2010-0078. DOI 10.1142/S2010007817500087. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • RANTANEN, Mika; KARPECHKO, Alexey Yu; LIPPONEN, Antti. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022-08-11, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN 2662-4435. DOI 10.1038/s43247-022-00498-3. (anglicky) 
  • CIAVARELLA, Andrew; COTTERILL, Daniel; STOTT, Peter. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change. 2021-05-06, roč. 166, čís. 1, s. 9. Dostupné online [cit. 2023-10-14]. ISSN 1573-1480. DOI 10.1007/s10584-021-03052-w. PMID 34720262. (anglicky) 
  • PRZYBYLAK, Rajmund. Recent air-temperature changes in the Arctic. Annals of Glaciology. 2007-01, roč. 46, s. 316–324. Dostupné online [cit. 2023-10-14]. ISSN 0260-3055. DOI 10.3189/172756407782871666. (anglicky) 
  • YU, Yining; XIAO, Wanxin; ZHANG, Zhilun. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sensing. 2021-01, roč. 13, čís. 14, s. 2813. Dostupné online [cit. 2023-10-14]. ISSN 2072-4292. DOI 10.3390/rs13142813. (anglicky) 
  • QUINN, P. K.; BATES, T. S.; BAUM, E. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008-03-25, roč. 8, čís. 6, s. 1723–1735. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-8-1723-2008. (English) 
  • CHAO-FONG, Léonie. ‘Drastic’ rise in high Arctic lightning has scientists worried. The Guardian. 2022-01-07. Dostupné online [cit. 2023-10-14]. ISSN 0261-3077. (anglicky) 
  • DAI, Aiguo; LUO, Dehai; SONG, Mirong. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications. 2019-01-10, roč. 10, čís. 1, s. 121. Dostupné online [cit. 2023-10-14]. ISSN 2041-1723. DOI 10.1038/s41467-018-07954-9. PMID 30631051. (anglicky) 
  • SINGH, Hansi A.; POLVANI, Lorenzo M. Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science. 2020-10-08, roč. 3, čís. 1, s. 1–10. Dostupné online [cit. 2023-10-14]. ISSN 2397-3722. DOI 10.1038/s41612-020-00143-w. (anglicky) 
  • AUGER, Matthis; MORROW, Rosemary; KESTENARE, Elodie. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications. 2021-01-21, roč. 12, čís. 1, s. 514. Dostupné online [cit. 2023-10-14]. ISSN 2041-1723. DOI 10.1038/s41467-020-20781-1. PMID 33479205. (anglicky) 
  • PISTONE, Kristina; EISENMAN, Ian; RAMANATHAN, Veerabhadran. Radiative Heating of an Ice‐Free Arctic Ocean. Geophysical Research Letters. 2019-07-16, roč. 46, čís. 13, s. 7474–7480. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082914. (anglicky) 
  • ISAKSEN, Ketil; NORDLI, Øyvind; IVANOV, Boris. Exceptional warming over the Barents area. Scientific Reports. 2022-06-15, roč. 12, čís. 1, s. 9371. Dostupné online [cit. 2023-10-14]. ISSN 2045-2322. DOI 10.1038/s41598-022-13568-5. (anglicky) 
  • CARRINGTON, Damian; EDITOR, Damian Carrington Environment. New data reveals extraordinary global heating in the Arctic. The Guardian. 2022-06-15. Dostupné online [cit. 2023-10-14]. ISSN 0261-3077. (anglicky) 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-14]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris; KLETT, James D. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters. 2022-07-16, roč. 49, čís. 13. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2022GL099371. (anglicky) 
  • ACOSTA NAVARRO, J. C.; VARMA, V.; RIIPINEN, I. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience. 2016-04, roč. 9, čís. 4, s. 277–281. Dostupné online [cit. 2023-10-14]. ISSN 1752-0908. DOI 10.1038/ngeo2673. (anglicky) 
  • CHYLEK, Petr; FOLLAND, Chris K.; LESINS, Glen. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters. 2009-07-16, roč. 36, čís. 14. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2009GL038777. (anglicky) 
  • QI, Ling; WANG, Shuxiao. Sources of black carbon in the atmosphere and in snow in the Arctic. Science of The Total Environment. 2019-11-15, roč. 691, s. 442–454. Dostupné online [cit. 2023-10-14]. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2019.07.073. 
  • STOHL, A.; KLIMONT, Z.; ECKHARDT, S. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics. 2013-09-05, roč. 13, čís. 17, s. 8833–8855. Dostupné online [cit. 2023-10-14]. ISSN 1680-7316. DOI 10.5194/acp-13-8833-2013. (English) 
  • ZHANG, Qiang; WAN, Zheng; HEMMINGS, Bill. Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production. 2019-12-20, roč. 241, s. 118261. Dostupné online [cit. 2023-10-14]. ISSN 0959-6526. DOI 10.1016/j.jclepro.2019.118261. 
  • HUANG, Yiyi; DONG, Xiquan; BAILEY, David A. Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring. Geophysical Research Letters. 2019-06-28, roč. 46, čís. 12, s. 6980–6989. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2019GL082791. (anglicky) 
  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • FISHER, David; ZHENG, James; BURGESS, David. Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change. 2012-03-01, roč. 84-85, čís. Perspectives on Climate in Medieval Time, s. 3–7. Dostupné online [cit. 2023-10-14]. ISSN 0921-8181. DOI 10.1016/j.gloplacha.2011.06.005. 
  • STROEVE, J. C.; MARKUS, T.; BOISVERT, L. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. 2014-02-28, roč. 41, čís. 4, s. 1216–1225. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1002/2013GL058951. (anglicky) 
  • LAWRENCE, David M.; SLATER, Andrew G. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 2005, roč. 32, čís. 24. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2005GL025080. (anglicky) 
  • COMISO, Josefino C.; PARKINSON, Claire L.; GERSTEN, Robert. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters. 2008-01-03, roč. 35, čís. 1. Dostupné online [cit. 2023-10-14]. ISSN 0094-8276. DOI 10.1029/2007GL031972. (anglicky) 
  • PETTY, Alek A.; STROEVE, Julienne C.; HOLLAND, Paul R. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere. 2018-02-06, roč. 12, čís. 2, s. 433–452. Dostupné online [cit. 2023-10-14]. ISSN 1994-0416. DOI 10.5194/tc-12-433-2018. (English) 
  • YADAV, Juhi; KUMAR, Avinash; MOHAN, Rahul. Dramatic decline of Arctic sea ice linked to global warming. Natural Hazards. 2020-09-01, roč. 103, čís. 2, s. 2617–2621. Dostupné online [cit. 2023-10-14]. ISSN 1573-0840. DOI 10.1007/s11069-020-04064-y. (anglicky) 
  • SENFTLEBEN, Daniel; LAUER, Axel; KARPECHKO, Alexey. Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate. 2020-02-15, roč. 33, čís. 4, s. 1487–1503. Dostupné online [cit. 2023-10-14]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0075.1. (EN) 
  • GREGORY, Jonathan M.; HUYBRECHTS, Philippe; RAPER, Sarah C. B. Threatened loss of the Greenland ice-sheet. Nature. 2004-04, roč. 428, čís. 6983, s. 616–616. Dostupné online [cit. 2023-10-14]. ISSN 1476-4687. DOI 10.1038/428616a. (anglicky) 
  • ZHANG, Jinlun; ROTHROCK, D. A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Monthly Weather Review. 2003-05-01, roč. 131, čís. 5, s. 845–861. Dostupné online [cit. 2023-10-15]. ISSN 1520-0493. DOI 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2. (EN) 
  • OVERPECK, Jonathan T.; STURM, Matthew; FRANCIS, Jennifer A. Arctic system on trajectory to new, seasonally ice‐free state. Eos, Transactions American Geophysical Union. 2005-08-23, roč. 86, čís. 34, s. 309–313. Dostupné online [cit. 2023-10-15]. ISSN 0096-3941. DOI 10.1029/2005EO340001. (anglicky) 
  • BUTT, Faisal A; DRANGE, Helge; ELVERHØI, Anders. Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results. Quaternary Science Reviews. 2002-08-01, roč. 21, čís. 14, s. 1643–1660. Dostupné online [cit. 2023-10-15]. ISSN 0277-3791. DOI 10.1016/S0277-3791(02)00018-5. 
  • VELICOGNA, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters. 2009-10-13, roč. 36, čís. 19. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2009GL040222. (anglicky) 
  • LASKOW, Sarah. America’s Secret Ice Base Won’t Stay Frozen Forever. Wired. Dostupné online [cit. 2023-10-15]. ISSN 1059-1028. (anglicky) 
  • CHRISTENSEN, Torben R. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters. 2004, roč. 31, čís. 4. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2003GL018680. (anglicky) 
  • BJORKMAN, Anne D.; GARCÍA CRIADO, Mariana; MYERS-SMITH, Isla H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2020-03-01, roč. 49, čís. 3, s. 678–692. Dostupné online [cit. 2023-10-15]. ISSN 1654-7209. DOI 10.1007/s13280-019-01161-6. PMID 30929249. (anglicky) 
  • GUTMAN, G. Garik. Vegetation indices from AVHRR: An update and future prospects. Remote Sensing of Environment. 1991-02-01, roč. 35, čís. 2, s. 121–136. Dostupné online [cit. 2023-10-15]. ISSN 0034-4257. DOI 10.1016/0034-4257(91)90005-Q. 
  • MYERS-SMITH, Isla H.; KERBY, Jeffrey T.; PHOENIX, Gareth K. Complexity revealed in the greening of the Arctic. Nature Climate Change. 2020-02, roč. 10, čís. 2, s. 106–117. Dostupné online [cit. 2023-10-15]. ISSN 1758-6798. DOI 10.1038/s41558-019-0688-1. (anglicky) 
  • BERNER, Logan T.; MASSEY, Richard; JANTZ, Patrick. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020-09-22, roč. 11, čís. 1, s. 4621. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-020-18479-5. PMID 32963240. (anglicky) 
  • MYERS‐SMITH, Isla H.; HIK, David S. Climate warming as a driver of tundra shrubline advance. Journal of Ecology. 2018-03, roč. 106, čís. 2, s. 547–560. Dostupné online [cit. 2023-10-15]. ISSN 0022-0477. DOI 10.1111/1365-2745.12817. (anglicky) 
  • ALATALO, Juha M.; JÄGERBRAND, Annika K.; MOLAU, Ulf. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany. 2014-10-01, roč. 124, čís. 2, s. 81–91. Dostupné online [cit. 2023-10-15]. ISSN 1664-221X. DOI 10.1007/s00035-014-0133-z. (anglicky) 
  • TAPE, Ken; STURM, Matthew; RACINE, Charles. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology. 2006-04, roč. 12, čís. 4, s. 686–702. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/j.1365-2486.2006.01128.x. (anglicky) 
  • ALATALO, Juha M.; LITTLE, Chelsea J. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus. 2014-03-22, roč. 3, čís. 1, s. 157. Dostupné online [cit. 2023-10-15]. ISSN 2193-1801. DOI 10.1186/2193-1801-3-157. PMID 24790813. 
  • LORANTY, Michael M.; GOETZ, Scott J.; BECK, Pieter S. A. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters. 2011-05, roč. 6, čís. 2, s. 024014. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/6/2/024014. (anglicky) 
  • BELKE-BREA, M.; DOMINE, F.; BARRERE, M. Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations. Journal of Climate. 2020-01-15, roč. 33, čís. 2, s. 597–609. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-0318.1. (EN) 
  • JEONG, Su-Jong; BLOOM, A. Anthony; SCHIMEL, David. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO 2 measurements. Science Advances. 2018-07-06, roč. 4, čís. 7. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aao1167. PMID 30009255. (anglicky) 
  • MARTIN, Andrew C; JEFFERS, Elizabeth S; PETROKOFSKY, Gillian. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environmental Research Letters. 2017-08-01, roč. 12, čís. 8, s. 085007. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/aa7989. 
  • LEE, Sang H.; WHITLEDGE, Terry E.; KANG, Sung-Ho. Carbon Uptake Rates of Sea Ice Algae and Phytoplankton under Different Light Intensities in a Landfast Sea Ice Zone, Barrow, Alaska. ARCTIC. 2008, roč. 61, čís. 3, s. 281–291. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic25. (anglicky) 
  • BRODER, John M.; REVKIN, Andrew C. Warming Is Seen as Wiping Out Most Polar Bears. The New York Times. 2007-09-08. Dostupné online [cit. 2023-10-15]. ISSN 0362-4331. (anglicky) 
  • DESCAMPS, Sébastien; AARS, Jon; FUGLEI, Eva. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology. 2017-02, roč. 23, čís. 2, s. 490–502. Dostupné online [cit. 2023-10-15]. ISSN 1354-1013. DOI 10.1111/gcb.13381. (anglicky) 
  • WEISER, Emily L.; BROWN, Stephen C.; LANCTOT, Richard B. Effects of environmental conditions on reproductive effort and nest success of Arctic‐breeding shorebirds. Ibis. 2018-07, roč. 160, čís. 3, s. 608–623. Dostupné online [cit. 2023-10-15]. ISSN 0019-1019. DOI 10.1111/ibi.12571. (anglicky) 
  • DOUGLAS, Thomas A.; TURETSKY, Merritt R.; KOVEN, Charles D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Climate and Atmospheric Science. 2020-07-24, roč. 3, čís. 1, s. 1–7. Dostupné online [cit. 2023-10-15]. ISSN 2397-3722. DOI 10.1038/s41612-020-0130-4. (anglicky) 
  • SAYEDI, Sayedeh Sara; ABBOTT, Benjamin W.; THORNTON, Brett F. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters. 2020-12, roč. 15, čís. 12, s. 124075. Dostupné online [cit. 2023-10-15]. ISSN 1748-9326. DOI 10.1088/1748-9326/abcc29. (anglicky) 
  • HUGELIUS, G.; STRAUSS, J.; ZUBRZYCKI, S. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014-12-01, roč. 11, čís. 23, s. 6573–6593. Dostupné online [cit. 2023-10-15]. ISSN 1726-4170. DOI 10.5194/bg-11-6573-2014. (English) 
  • NOWINSKI, Nicole S.; TANEVA, Lina; TRUMBORE, Susan E. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia. 2010-07-01, roč. 163, čís. 3, s. 785–792. Dostupné online [cit. 2023-10-15]. ISSN 1432-1939. DOI 10.1007/s00442-009-1556-x. PMID 20084398. (anglicky) 
  • SCHUUR, Edward A. G.; BOCKHEIM, James; CANADELL, Josep G. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience. 2008-09-01, roč. 58, čís. 8, s. 701–714. Dostupné online [cit. 2023-10-15]. ISSN 1525-3244. DOI 10.1641/b580807. 
  • LI, Qi; HU, Weifang; LI, Linfeng. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of The Total Environment. 2023-01-10, roč. 855, s. 158710. Dostupné online [cit. 2023-10-15]. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2022.158710. 
  • PATZNER, Monique S.; MUELLER, Carsten W.; MALUSOVA, Miroslava. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications. 2020-12-10, roč. 11, čís. 1, s. 6329. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-020-20102-6. PMID 33303752. (anglicky) 
  • DIETZ, Simon; RISING, James; STOERK, Thomas. Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences. 2021-08-24, roč. 118, čís. 34. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2103081118. PMID 34400500. (anglicky) 
  • KEEN, Steve; LENTON, Timothy M.; GARRETT, Timothy J. Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2117308119. PMID 35588449. (anglicky) 
  • DIETZ, Simon; RISING, James; STOERK, Thomas. Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences. 2022-05-24, roč. 119, čís. 21. Dostupné online [cit. 2023-10-15]. ISSN 0027-8424. DOI 10.1073/pnas.2201191119. PMID 35588452. (anglicky) 
  • ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online [cit. 2023-10-15]. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  • SHAKHOVA, Natalia. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005, roč. 32, čís. 9. Dostupné online [cit. 2023-10-15]. ISSN 0094-8276. DOI 10.1029/2005GL022751. (anglicky) 
  • SHAKHOVA, Natalia; SEMILETOV, Igor; LEIFER, Ira. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014-01, roč. 7, čís. 1, s. 64–70. Dostupné online [cit. 2023-10-15]. ISSN 1752-0908. DOI 10.1038/ngeo2007. (anglicky) 
  • SHAKHOVA, Natalia; SEMILETOV, Igor; GUSTAFSSON, Orjan. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017-06-22, roč. 8, čís. 1, s. 15872. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/ncomms15872. PMID 28639616. (anglicky) 
  • VAUGHAN, Adam. Arctic ice loss could trigger huge extra global warming. New Scientist. 2020-11-07, roč. 248, čís. 3307, s. 21. Dostupné online [cit. 2023-10-15]. ISSN 0262-4079. DOI 10.1016/S0262-4079(20)31956-4. 
  • BLACKPORT, Russell; SCREEN, James A.; VAN DER WIEL, Karin. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change. 2019-09, roč. 9, čís. 9, s. 697–704. Dostupné online [cit. 2023-10-15]. ISSN 1758-6798. DOI 10.1038/s41558-019-0551-4. (anglicky) 
  • BLACKPORT, Russell; SCREEN, James A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances. 2020-02-21, roč. 6, čís. 8. Dostupné online [cit. 2023-10-15]. ISSN 2375-2548. DOI 10.1126/sciadv.aay2880. PMID 32128402. (anglicky) 
  • STREFFING, Jan; SEMMLER, Tido; ZAMPIERI, Lorenzo. Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate. 2021-09-09, s. 1–39. Dostupné online [cit. 2023-10-15]. ISSN 0894-8755. DOI 10.1175/JCLI-D-19-1005.1. 
  • SMITH, D. M.; EADE, R.; ANDREWS, M. B. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications. 2022-02-07, roč. 13, čís. 1, s. 727. Dostupné online [cit. 2023-10-15]. ISSN 2041-1723. DOI 10.1038/s41467-022-28283-y. PMID 35132058. (anglicky) 
  • ECKEL, Mike. Russia says tests back claim to Arctic ridge. The Guardian. 2007-09-21. Dostupné online [cit. 2023-10-15]. ISSN 0261-3077. (anglicky) 
  • BERKES, Fikret; JOLLY, Dyanna. Adapting to Climate Change: Social-Ecological Resilience in a Canadian Western Arctic Community. Conservation Ecology. 2001-12-20, roč. 5, čís. 2. Dostupné online [cit. 2023-10-15]. ISSN 1195-5449. DOI 10.5751/ES-00342-050218. (anglicky) 
  • FARQUHAR, Samantha D. Inuit Seal Hunting in Canada: Emerging Narratives in an Old Controversy. ARCTIC. 2020-03-18, roč. 73, čís. 1, s. 13–19. Dostupné online [cit. 2023-10-15]. ISSN 1923-1245. DOI 10.14430/arctic69833. (anglicky) 

worldscientific.com

yale.edu

e360.yale.edu

  • Arctic Roamers: The Move of Southern Species into Far North. Yale E360 [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)