Elliptische Integrale (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Elliptische Integrale" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
123rd place
6th place
513th place
549th place
1,983rd place
2,278th place
6th place
40th place
149th place
298th place
1,844th place
3,770th place
1,336th place
3,611th place
low place
low place
485th place
715th place
742nd place
1,797th place
low place
low place
1,185th place
2,009th place
2,036th place
1,983rd place
441st place
618th place
355th place
290th place
274th place
152nd place
low place
low place
low place
low place
206th place
3,122nd place
low place
low place
1,960th place
130th place
low place
low place

acm.org

dl.acm.org

  • J. N. Bramhall: An iterative method for inversion of power series. In: Communications of the ACM. Band 4, Nr. 7, Juli 1961, ISSN 0001-0782, S. 317–318, doi:10.1145/366622.366629 (acm.org [abgerufen am 11. Juni 2023]).

archive.org

  • archive.org
  • Karl Heinrich Schellbach: Die Lehre von den Elliptischen Integralen und den ThetaFunctionen. Hrsg.: G. Reimer. 1864 (archive.org [abgerufen am 11. Juni 2023]).
  • Internet Archive: Paul Halmos celebrating 50 years of mathematics. New York : Springer-Verlag, 1991, ISBN 0-387-97509-8 (archive.org [abgerufen am 10. Februar 2023]).

doi.org

  • Thomas Koshy: The Central Binomial Coefficient. 9. November 2008, doi:10.1093/acprof:oso/9780195334548.003.0002 (oup.com [abgerufen am 26. Dezember 2022]).
  • R. B. King, E. R. Canfield: Icosahedral symmetry and the quintic equation. In: Computers & Mathematics with Applications. Band 24, Nr. 3, 1. August 1992, ISSN 0898-1221, S. 13–28, doi:10.1016/0898-1221(92)90210-9 (sciencedirect.com [abgerufen am 28. Mai 2023]).
  • R. B. King, E. R. Canfield: Icosahedral symmetry and the quintic equation. In: Computers & Mathematics with Applications. Band 24, Nr. 3, 1. August 1992, ISSN 0898-1221, S. 13–28, doi:10.1016/0898-1221(92)90210-9 (sciencedirect.com [abgerufen am 11. Juni 2023]).
  • J. N. Bramhall: An iterative method for inversion of power series. In: Communications of the ACM. Band 4, Nr. 7, Juli 1961, ISSN 0001-0782, S. 317–318, doi:10.1145/366622.366629 (acm.org [abgerufen am 11. Juni 2023]).
  • Paul F. Byrd, Morris D. Friedman: Handbook of Elliptic Integrals for Engineers and Physicists. Springer Berlin Heidelberg, 1954, doi:10.1007/978-3-642-52803-3.
  • Roland Bulirsch: Numerical calculation of elliptic integrals and elliptic functions. In: Numerische Mathematik. Band 7, Nr. 1, Februar 1965, ISSN 0029-599X, S. 78–90, doi:10.1007/BF01397975.
  • Toshio Fukushima, Hideharu Ishizaki: Numerical computation of incomplete elliptic integrals of a general form. In: Celestial Mechanics & Dynamical Astronomy. Band 59, Nr. 3, Juli 1994, ISSN 0923-2958, S. 237–251, doi:10.1007/BF00692874 (Online).
  • Numerical calculation of elliptic integrals and elliptic functions. III. In: Numerische Mathematik. Band 13, Nr. 4, 1969, S. 305–315, doi:10.1007/BF02165405.
  • B. C. Carlson: Numerical computation of real or complex elliptic integrals. In: Numerical Algorithms. Band 10, Nr. 1, März 1995, ISSN 1017-1398, S. 13–26, doi:10.1007/bf02198293.
  • Toshio Fukushima: Applications and Experiments. DE GRUYTER, 31. Dezember 2014, Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy, S. 187–226, doi:10.1515/9783110345667.187.
  • Peter Lowell Walstrom: Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates. Office of Scientific and Technical Information (OSTI), 24. August 2017, doi:10.2172/1377379.

eudml.org

  • Adolf Kneser: Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen. In: Journal für die reine und angewandte Mathematik. Band 158, 1927, ISSN 0075-4102, S. 209–218 (eudml.org [abgerufen am 11. Juni 2023]).

hathitrust.org

catalog.hathitrust.org

  • K. H. Schellbach: Die Lehre von den elliptischen Integralen und den Theta-Functionen. G. Reimer, Berlin 1864 (hathitrust.org [abgerufen am 6. Juni 2023]).

johndcook.com

mathoverflow.net

  • Question. Numerically computing . Abgerufen am 29. November 2022 (englisch).

msu.edu

archive.lib.msu.edu

netlib.org

nist.gov

dlmf.nist.gov

numericana.com

  • Gérard P. Michon: Perimeter of an Ellipse. Abschnitt Very Precise Fast Computations. Auf: numericana.com. Abgerufen am 26. Juli 2015.

oeis.org

osti.gov

  • D. K. Lee: Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds. ORNL/TM-11075. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1. März 1989 (osti.gov [abgerufen am 11. Juni 2023]).

oup.com

academic.oup.com

paramanands.blogspot.com

proquest.com

sciencedirect.com

spektrum.de

springer.com

link.springer.com

  • Toshio Fukushima, Hideharu Ishizaki: Numerical computation of incomplete elliptic integrals of a general form. In: Celestial Mechanics & Dynamical Astronomy. Band 59, Nr. 3, Juli 1994, ISSN 0923-2958, S. 237–251, doi:10.1007/BF00692874 (Online).

stackexchange.com

mathematica.stackexchange.com

math.stackexchange.com

unt.edu

digital.library.unt.edu

wolfram.com

mathworld.wolfram.com

functions.wolfram.com

zdb-katalog.de

  • R. B. King, E. R. Canfield: Icosahedral symmetry and the quintic equation. In: Computers & Mathematics with Applications. Band 24, Nr. 3, 1. August 1992, ISSN 0898-1221, S. 13–28, doi:10.1016/0898-1221(92)90210-9 (sciencedirect.com [abgerufen am 28. Mai 2023]).
  • Adolf Kneser: Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen. In: Journal für die reine und angewandte Mathematik. Band 158, 1927, ISSN 0075-4102, S. 209–218 (eudml.org [abgerufen am 11. Juni 2023]).
  • R. B. King, E. R. Canfield: Icosahedral symmetry and the quintic equation. In: Computers & Mathematics with Applications. Band 24, Nr. 3, 1. August 1992, ISSN 0898-1221, S. 13–28, doi:10.1016/0898-1221(92)90210-9 (sciencedirect.com [abgerufen am 11. Juni 2023]).
  • J. N. Bramhall: An iterative method for inversion of power series. In: Communications of the ACM. Band 4, Nr. 7, Juli 1961, ISSN 0001-0782, S. 317–318, doi:10.1145/366622.366629 (acm.org [abgerufen am 11. Juni 2023]).
  • Roland Bulirsch: Numerical calculation of elliptic integrals and elliptic functions. In: Numerische Mathematik. Band 7, Nr. 1, Februar 1965, ISSN 0029-599X, S. 78–90, doi:10.1007/BF01397975.
  • Toshio Fukushima, Hideharu Ishizaki: Numerical computation of incomplete elliptic integrals of a general form. In: Celestial Mechanics & Dynamical Astronomy. Band 59, Nr. 3, Juli 1994, ISSN 0923-2958, S. 237–251, doi:10.1007/BF00692874 (Online).
  • B. C. Carlson: Numerical computation of real or complex elliptic integrals. In: Numerical Algorithms. Band 10, Nr. 1, März 1995, ISSN 1017-1398, S. 13–26, doi:10.1007/bf02198293.