Graphen (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Graphen" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
4th place
7th place
766th place
46th place
69th place
189th place
1st place
1st place
18th place
181st place
low place
2,256th place
7,917th place
477th place
3,168th place
224th place
4,003rd place
8,572nd place
240th place
13th place
26th place
153rd place
low place
2,501st place
33rd place
2nd place
301st place
369th place
782nd place
1,803rd place
low place
2,609th place
low place
low place
low place
low place
234th place
203rd place
102nd place
1,110th place
415th place
779th place
1,131st place
1,159th place
6,156th place
low place
low place
low place
1,624th place
377th place
low place
4,643rd place
68th place
29th place
7,696th place
870th place
2,481st place
5,460th place

arxiv.org

  • Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. Gunko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J.N. Coleman: High yield production of graphene by liquid phase exfoliation of graphite. In: arXiv. 2008, arxiv:0805.2850.
  • K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, Th. Seyller: Atmospheric pressure graphitization of SiC(0001)- A route towards wafer-size graphene layers. In: arXiv – Condensed Matter, Materials Science. 2008, arxiv:0808.1222.
  • A. H. Castro Neto, F. Guinea, N. M. R Peres, K. S. Novoselov, A. K. Geim: The electronic properties of graphene. In: Arxiv preprint. 2007, arxiv:0709.1163v2.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. In: Nature. Band 438, Nr. 7065, 2005, S. 197–200, doi:10.1038/nature04233, arxiv:cond-mat/0509330v1.

brown.edu

news.brown.edu

doi.org

  • P. R. Wallace: The Band Theory of Graphite. In: Physical Review. Band 71, Nr. 9, 1947, S. 622–634, doi:10.1103/PhysRev.71.622.
  • Sumio Iijima: Helical microtubules of graphitic carbon. In: Nature. Band 354, 1991, S. 56–58, doi:10.1038/354056a0.
  • Mitsutaka Fujita, Riichiro Saito, G. Dresselhaus, M. S. Dresselhaus: Formation of general fullerenes by their projection on a honeycomb lattice. In: Physical Review B. Band 45, Nr. 23, 1992, S. 13834–13836, doi:10.1103/PhysRevB.45.13834.
  • Patrick Vogt u. a.: Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. In: Physical Review Letters. Band 108, Nr. 15, 12. April 2012, S. 155501, doi:10.1103/PhysRevLett.108.155501.
  • V. Kohlschütter, P. Haenni: Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. In: Zeitschrift für anorganische und allgemeine Chemie. Band 105, Nr. 1, 1918, S. 121–144, doi:10.1002/zaac.19191050109.
  • H. P. Boehm, A. Clauss, G. O. Fischer, U. Hofmann: Das Adsorptionsverhalten sehr dünner Kohlenstoffolien. In: Zeitschrift für anorganische und allgemeine Chemie. Band 316, Nr. 3–4, 1962, S. 119–127, doi:10.1002/zaac.19623160303.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, A. A. Firsov: Electric Field Effect in Atomically Thin Carbon Films. In: Science. Band 306, Nr. 5696, 2004, S. 666–669, doi:10.1126/science.1102896.
  • N. D. Mermin: Crystalline Order in Two Dimensions. In: Physical Review. Band 176, Nr. 1, 1968, S. 250 ff., doi:10.1103/PhysRev.176.250.
  • J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth: The structure of suspended graphene sheets. In: Nature. Band 446, 2007, S. 60–63, doi:10.1038/nature05545.
  • V. Tung, M. Allen, Y. Yanget al: High-throughput solution processing of large-scale graphene. In: Nature Nanotech. Band 4, 2009, S. 25–29, doi:10.1038/nnano.2008.329.
  • J. Wu, W. Pisula, K. Müllen: Graphenes as Potential Material for Electronics. In: Chemical Reviews. Band 107, Nr. 3, 2007, S. 718–747, doi:10.1021/cr068010r.
  • L. Zhi, K. Müllen: A bottom-up approach from molecular nanographenes to unconventional carbon materials. In: J. Mater. Chem. Band 18, Nr. 18, 2008, S. 1472–1484, doi:10.1039/b717585j.
  • Mohammad Choucair, Pall Thordarson, John A. Stride: Gram-scale production of graphene based on solvothermal synthesis and sonication. In: Nature Nanotechnology. Band 04, 2009, S. 30–33, doi:10.1038/NNANO.2008.365.
  • A. T. N'Diaye, S. Bleikamp, P. J. Feibelman, T. Michely: Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). In: Physical Review Letters. Band 97, Nr. 21, 2006, S. 718–747, doi:10.1103/PhysRevLett.97.215501.
  • P.W. Sutter, J.-I. Flege, E. A. Sutter,: Epitaxial graphene on ruthenium. In: Nature Materials. Band 97, Nr. 5, 2008, S. 406–411, doi:10.1038/nmat2166.
  • I. Forbeaux, J.-M. Themlin, J.-M. Debever: Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure, overview surface reconstructions LEED, KRIPES, dispersion relation, XPS, UPS, SXPS. In: Physical Review B. Nr. 24, 1998, S. 16396–16406, doi:10.1103/PhysRevB.58.16396.
  • A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R. Pinchaux, I. Forbeaux, J.-M. Debever, M. Sauvage-Simkin, J.-M. Themlin: Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. In: Journal of Applied Physics. Band 92, Nr. 5, 2002, S. 2479–2480, doi:10.1063/1.1498962.
  • Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Ozyilmaz, Jong-Hyun Ahn, Byung Hee Hong, Sumio Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. In: Nat Nano. Band 5, Nr. 8, 2010, S. 574–578, doi:10.1038/nnano.2010.132 (canli.dicp.ac.cn (Memento vom 10. Juli 2012 im Internet Archive) [PDF; abgerufen am 5. Oktober 2010]).
  • Luca Banszerus, Michael Schmitz, Stephan Engels, Jan Dauber, Martin Oellers, Federica Haupt, Kenji Watanabe, Takashi Taniguchi, Bernd Beschoten and Christoph Stampfer: Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. In: Sci Adv. Band 1, Nr. 6, 2015, S. e1500222, doi:10.1126/sciadv.1500222.
  • Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone: Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. In: Science. Band 321, Nr. 5887, 2008, S. 385–388, doi:10.1126/science.1157996.
  • Zhihong Chen, Yu-Ming Lin, Michael J. Rooks, Phaedon Avouris: Graphene nano-ribbon electronics. In: Physica E: Low-dimensional Systems and Nanostructures. Band 40, Nr. 2, 2007, S. 228–232, doi:10.1016/j.physe.2007.06.020.
  • A. B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel: Universal infrared conductance of graphite. In: Phys Rev Lett. Vol. 100, Nr. 11, 2008, S. 117401, doi:10.1103/PhysRevLett.100.117401, PMID 18517825, bibcode:2008PhRvL.100k7401K.
  • R. R. Nair u. a.: Fine Structure Constant Defines Visual Transparency of Graphene. In: Science. Band 320, Nr. 5881, 6. Juni 2008, S. 1308–1308, doi:10.1126/science.1156965 (manchester.ac.uk [PDF]).
  • A. K. Geim, K. S. Novoselov: The rise of graphene. In: Nature Materials. Nr. 6, 2007, S. 183–191, doi:10.1038/nmat1849.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. In: Nature. Band 438, Nr. 7065, 2005, S. 197–200, doi:10.1038/nature04233, arxiv:cond-mat/0509330v1.
  • Nathaniel M. Gabor, Justin C. W. Song, Qiong Ma, Nityan L. Nair, Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Pablo Jarillo-Herrero: Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. In: Science. Nr. 6056, 2011, S. 648–652, doi:10.1126/science.1211384.
  • N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, M. F. Crommie: Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles. In: Science. Band 329, Nr. 5991, 30. Juni 2010, S. 544–547, doi:10.1126/science.1191700.
  • D. A. Abanin, S. V. Morozov, L. K. Ponomarenko, R. V. Gorbachev , A. S. Mayorov, M. I. Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov, L. S. Levitov, A. K. Geim: Giant Nonlocality Near the Dirac Point in Graphene. In: Science. Band 332, Nr. 6027, 15. April 2011, S. 328–330, doi:10.1126/science.1199595.
  • Dahlia R. Klein, Li-Qiao Xia, David MacNeill, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero: Electrical switching of a bistable moiré superconductor. In: Nature Nanotechnology. 30. Januar 2023, doi:10.1038/s41565-022-01314-x (nature.com [abgerufen am 2. Februar 2023]).
  • Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, Feng Wang: Direct observation of a widely tunable bandgap in bilayer graphene. In: Nature. Band 459, Nr. 7248, 2009, S. 820–823, doi:10.1038/nature08105.
  • D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov: Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. In: Science. Band 323, Nr. 5914, 30. September 2009, S. 610–613, doi:10.1126/science.1167130.
  • Yang Xu, Yunlong Liu, Huabin Chen, Xiao Lin, Shisheng Lin, Bin Yu, Jikui Luo: Ab initio study of energy-band modulation ingraphene-based two-dimensional layered superlattices. In: Journal of Materials Chemistry. 22. Jahrgang, Nr. 45, 2012, S. 23821, doi:10.1039/C2JM35652J.
  • Zheng Liu u. a.: In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. In: Nature Nanotechnology. Band 8, Nr. 2, Februar 2013, S. 119–124, doi:10.1038/nnano.2012.256.
  • Isaac M. Felix, Luiz Felipe C. Pereira: Thermal Conductivity of Graphene-hBN Superlattice Ribbons. In: Scientific Reports. Band 8, Nr. 1, 9. Februar 2018, S. 2737, doi:10.1038/s41598-018-20997-8.
  • Yanqing Wu, Yu-ming Lin, Ageeth A. Bol, Keith A. Jenkins, Fengnian Xia, Damon B. Farmer, Yu Zhu, Phaedon Avouris: High-frequency, scaled graphene transistors on diamond-like carbon. In: Nature. Band 472, Nr. 7341, 7. März 2011, S. 74–78, doi:10.1038/nature09979.
  • A. H. Alateah: Graphene concrete: Recent advances in production methods, performance properties, environmental impact and economic viability. In: Case Studies in Construction Materials. Band 19, doi:10.1016/j.cscm.2023.e02653.
  • Y. Li, H. Yuan, A. von Dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. In: Proceedings of the National Academy of Sciences. 110. Jahrgang, Nr. 30, 2013, S. 12295–12300, doi:10.1073/pnas.1222276110, PMID 23840061, PMC 3725082 (freier Volltext), bibcode:2013PNAS..11012295L (englisch).
  • Jacob D. Lanphere, Brandon Rogers, Corey Luth, Carl H. Bolster, Sharon L. Walker: Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water. In: Environmental Engineering Science. 17. März 2014, doi:10.1089/ees.2013.0392 (englisch).
  • Y Talukdar, J. T. Rashkow, G Lalwani, S Kanakia, B Sitharaman: The effects of graphene nanostructures on mesenchymal stem cells. In: Biomaterials. 35. Jahrgang, Nr. 18, 2014, S. 4863–77, doi:10.1016/j.biomaterials.2014.02.054, PMID 24674462, PMC 3995421 (freier Volltext) – (englisch).
  • Gaurav Lalwani, Michael D'Agati, Amit Mahmud Khan, Balaji Sitharaman: Toxicology of graphene-based nanomaterials. In: Advanced Drug Delivery Reviews. 105. Jahrgang, Pt B, 2016, S. 109–144, doi:10.1016/j.addr.2016.04.028, PMID 27154267, PMC 5039077 (freier Volltext) – (englisch).
  • Lingling Ou, Bin Song, Huimin Liang, Jia Liu, Xiaoli Feng, Bin Deng, Ting Sun, Longquan Shao: Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. In: Particle and Fibre Toxicology. 13. Jahrgang, Nr. 1, 2016, S. 57, doi:10.1186/s12989-016-0168-y, PMID 27799056, PMC 5088662 (freier Volltext) – (englisch).
  • Shubhi Joshi, Ruby Siddiqui, Pratibha Sharma, Rajesh Kumar, Gaurav Verma, Avneet Saini: Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. In: Scientific Reports. 10. Jahrgang, Nr. 9441, 2020, S. 9441, doi:10.1038/s41598-020-66230-3, PMID 32523022, PMC 7287048 (freier Volltext), bibcode:2020NatSR..10.9441J (englisch).

europa.eu

cordis.europa.eu

fau.de

open.fau.de

  • Harry Marsh, Francisco Rodríguez-Reinoso: Science of Carbon Materials. 2000. Zitiert in: Christian Anton Rottmair: Einfluss der thermischen Prozessführung auf die Eigenschaften von Graphitformteilen, hergestellt durch Pulverspritzguss von Mesophasen-Kohlenstoff. 2007, S. 10–11 (fau.de [PDF] Dissertationsarbeit, Universität Erlangen-Nürnberg, 2007).

faz.net

flowpaper.com

780207571.flowpaper.com

fraunhofer.de

fz-juelich.de

golem.de

graphene-flagship.eu

graphene-info.com

handle.net

hdl.handle.net

  • Isaac de Macêdo Félix: Condução de calor em nanofitas quase-periódicas de grafeno-hBN. Doktorarbeit, Universidade Federal do Rio Grande do Norte. 4. August 2020, hdl:123456789/30749 (brasilianisches Portugiesisch).

harvard.edu

ui.adsabs.harvard.edu

heise.de

ibm.com

www-03.ibm.com

jstor.org

manchester.ac.uk

condmat.physics.manchester.ac.uk

manchester.ac.uk

mit.edu

web.mit.edu

mpg.de

nature.com

  • Dahlia R. Klein, Li-Qiao Xia, David MacNeill, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero: Electrical switching of a bistable moiré superconductor. In: Nature Nanotechnology. 30. Januar 2023, doi:10.1038/s41565-022-01314-x (nature.com [abgerufen am 2. Februar 2023]).

nih.gov

ncbi.nlm.nih.gov

nobelprize.org

  • Class for Physics of the Royal Swedish Academy of Sciences: Scientific Background on the Nobel Prize in Physics 2010 - Graphene. 2010, S. 8 (nobelprize.org [PDF]).

physorg.com

pro-physik.de

redirecter.toolforge.org

scinexx.de

ucla.edu

newsroom.ucla.edu

uni-erlangen.de

chemie.uni-erlangen.de

  • Siehe etwa den Artikel von Louisa Knobloch, Forscher setzen auf „Wundermaterial“, Mittelbayerische Zeitung, 11. Febr. 2013, Seite 21, oder den folgenden Internet-Artikel der Universität Erlangen, EU startet neues Großprojekt im Bereich Graphen, (abgerufen am 11. Febr. 2013).

web.archive.org

  • Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Ozyilmaz, Jong-Hyun Ahn, Byung Hee Hong, Sumio Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. In: Nat Nano. Band 5, Nr. 8, 2010, S. 574–578, doi:10.1038/nnano.2010.132 (canli.dicp.ac.cn (Memento vom 10. Juli 2012 im Internet Archive) [PDF; abgerufen am 5. Oktober 2010]).
  • Rainer Scharf: Sichtbare Feinstrukturkonstante. In: Pro Physik. 4. April 2008, archiviert vom Original (nicht mehr online verfügbar) am 18. Dezember 2010; abgerufen am 24. Februar 2011.
  • Siehe z. B. den folgenden Artikel in der Ausgabe des Physik-Journals vom Mai 2011: Online (Memento vom 22. Mai 2011 im Internet Archive).