Künstliches neuronales Netz (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Künstliches neuronales Netz" in German language version.

refsWebsite
Global rank German rank
low place
6,992nd place
1st place
1st place
2nd place
3rd place
123rd place
6th place
69th place
189th place
7,696th place
870th place
415th place
779th place
low place
low place
low place
2,510th place
7,479th place
853rd place
274th place
152nd place
low place
low place
2,318th place
3,432nd place
low place
8,952nd place
11th place
1,120th place
8,920th place
low place
4,871st place
9,950th place
766th place
46th place

arxiv.org

  • M. D. Zeiler, R. Fergus: Visualizing and Understanding Convolutional Networks. 2013. arxiv:1311.2901
  • Dynamic Neural Networks: A Survey, Autoren Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, Yulin Wang, https://arxiv.org/pdf/2102.04906

chemgapedia.de

dkriesel.com

doi.org

  • Warren S. McCulloch und Walter Pitts: A logical calculus of the ideas immanent in nervous activity. Hrsg.: Bulletin of Mathematical Biophysics. Vol. 5 Auflage. Kluwer Academic Publishers, 1943, S. 115–133, doi:10.1007/BF02478259.
  • K. Fukushima: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. In: Biological Cybernetics. Band 36, Nr. 4, 1980, S. 93–202, doi:10.1007/BF00344251.
  • Dominik Scherer, Andreas Müller, Sven Behnke: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: Artificial Neural Networks – ICANN 2010 (= Lecture Notes in Computer Science). Springer Berlin Heidelberg, 2010, ISBN 978-3-642-15825-4, S. 92–101, doi:10.1007/978-3-642-15825-4_10 (springer.com [abgerufen am 26. August 2019]).

faqs.org

fraunhofer.de

bigdata-ai.fraunhofer.de

georgetown.edu

riesenhuberlab.neuro.georgetown.edu

heise.de

idsia.ch

lecun.com

yann.lecun.com

mit.edu

news.mit.edu

semanticscholar.org

  • J. Pennington und Y. Bahri: Geometry of Neural Network Loss Surfaces via Random Matrix Theory. In: ICML. 2017 (semanticscholar.org).

springer.com

link.springer.com

  • Dominik Scherer, Andreas Müller, Sven Behnke: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: Artificial Neural Networks – ICANN 2010 (= Lecture Notes in Computer Science). Springer Berlin Heidelberg, 2010, ISBN 978-3-642-15825-4, S. 92–101, doi:10.1007/978-3-642-15825-4_10 (springer.com [abgerufen am 26. August 2019]).

toronto.edu

cs.toronto.edu

towardsdatascience.com

tu-berlin.de

user.tu-berlin.de

web.archive.org

zdb-katalog.de

  • Bernhard Widrow, Marcian Hoff: Adaptive switching circuits. In: Proceedings WESCON. 1960, ZDB-ID 267416-6, S. 96–104.
  • Teuvo Kohonen: Correlation matrix memories. In: IEEE transactions on computers. C-21, 1972, ISSN 0018-9340, S. 353–359.
  • James A. Anderson: A simple neural network generating an interactive memory. In: Mathematical Biosciences. 14, 1972, ISSN 0025-5564, S. 197–220.