Paläozän/Eozän-Temperaturmaximum (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Paläozän/Eozän-Temperaturmaximum" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
120th place
143rd place
1,293rd place
678th place
1,540th place
1,676th place
low place
8,071st place
1,308th place
2,294th place
488th place
1,027th place
11th place
1,120th place
1st place
1st place
33rd place
2nd place
low place
low place
234th place
203rd place
565th place
897th place
low place
low place
850th place
1,668th place
low place
low place
low place
low place
340th place
525th place
low place
low place
1,708th place
3,409th place
low place
7,581st place
6,584th place
5,830th place
580th place
1,106th place
8,929th place
low place
149th place
298th place
222nd place
272nd place
123rd place
6th place
1,999th place
2,709th place
741st place
1,038th place
low place
4,438th place
1,067th place
2,868th place

IABotmemento.invalid

  • John A. Higgins, Daniel P. Schrag: Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters. Nr. 345, März 2006, S. 523–537, doi:10.1016/j.epsl.2006.03.009 (englisch, Online [PDF]). Online (Memento des Originals vom 21. Oktober 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. Band 334, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, Online [PDF]). Online (Memento des Originals vom 20. Februar 2019 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org

berkeley.edu

seismo.berkeley.edu

  • Michael Storey, Robert A. Duncan, Carl C. Swisher: Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. In: Science. Band 316, Nr. 5824, April 2007, S. 587–589, doi:10.1126/science.1135274 (englisch, Online [PDF]).

clim-past.net

  • A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, C. P. Slomp: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. In: Climate of the Past. Band 10, Nr. 4, Juli 2014, S. 1421–1439, doi:10.5194/cp-10-1421-2014 (englisch, Online [PDF]).

columbia.edu

eesc.columbia.edu

  • J. P. Kenneth, L. D. Stott: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. In: Nature. Band 353, September 1991, S. 225–229, doi:10.1038/353225a0 (englisch, Online [PDF]).
  • Richard E. Zeebe, James C. Zachos, Gerald R. Dickens: Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. In: Nature Geoscience. Band 2, Nr. 8, Juli 2009, S. 576–580, doi:10.1038/ngeo578 (englisch, Online [PDF]).

d1wqtxts1xzle7.cloudfront.net

  • Tatsuhiko Yamaguchi, Richard D. Norris, André Bornemann: Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 346–347, Nr. 6384, August 2012, S. 130–144, doi:10.1016/j.palaeo.2012.06.004 (englisch, Online [PDF]).

doi.org

  • Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Margot J. Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, Richard D. Pancost: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. In: Climate of the Past. Band 16, Nr. 5, Oktober 2020, S. 1953–1968, doi:10.5194/cp-16-1953-2020 (englisch).
  • James D. Wright, Morgan F. Schaller: Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. In: Proceedings of the National Academy of Sciences. Band 110, Nr. 40, Oktober 2013, S. 15908–15913, doi:10.1073/pnas.1309188110 (PDF).
  • Peter Stassen, Robert P. Speijer, Ellen Thomas: Unsettled puzzle of the Marlboro clays. In: PNAS. Band 111, Nr. 12, 2014, S. E1066–E1067, doi:10.1073/pnas.1321839111 (englisch).
  • Richard E. Zeebe, Andy Ridgwell, James C. Zachos: Anthropogenic carbon release rate unprecedented during the past 66 million years. In: Nature Geoscience. Band 9, Nr. 4, April 2016, S. 325–329, doi:10.1038/ngeo2681 (englisch, Online [PDF]).
  • Gary Shaffer, Matthew Huber, Roberto Rondanelli, Jens Olaf Pepke Pedersen: Deep time evidence for climate sensitivity increase with warming. In: Geophysical Research Letters. Band 43, Nr. 12, Juni 2016, S. 6538–6545, doi:10.1002/2016GL069243 (englisch, Online [PDF]).
  • Appy Sluijs, Stefan Schouten, Timme H. Donders, Petra L. Schoon, Ursula Röhl, Gert-Jan Reichart, Francesca Sangiorgi, Jung-Hyun Kim, Jaap S. Sinninghe Damsté, Henk Brinkhuis: Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. In: Nature Geoscience. Band 2, Nr. 11, Oktober 2009, S. 777–780, doi:10.1038/ngeo668 (englisch, Online [PDF]).
  • Joost Frieling, Alina I. Iakovleva, Gert-Jan Reichart, Galina N. Aleksandrova, Zinaida N. Gnibidenko, Stefan Schouten, Appy Sluijs: Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea. In: geology. Band 42, Nr. 9, September 2014, S. 767–770, doi:10.1130/G35724.1 (englisch, Online [PDF]).
  • T. Aze, P. N. Pearson, A. J. Dickson, M. P. S. Badger, P. R. Bown, R. D. Pancost, S. J. Gibbs, B. T. Huber, M. J. Leng, A. L. Coe, A. S. Cohen, G. L. Foster: Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum. In: geology. Band 42, Nr. 9, Juli 2014, S. 739–742, doi:10.1130/G35637.1 (englisch, Online [PDF]).
  • Donald E. Penman, Bärbel Hönisch, Richard E. Zeebe, Ellen Thomas, James C. Zachos: Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. In: Oceanography. Band 29, Nr. 5, Mai 2014, S. 357–369, doi:10.1002/2014PA002621 (englisch, Online [PDF]).
  • Donald E. Penman: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. In: Geology. Band 44, Nr. 9, September 2016, S. 731–734, doi:10.1130/G37704.1 (englisch, Online [PDF]).
  • A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, C. P. Slomp: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. In: Climate of the Past. Band 10, Nr. 4, Juli 2014, S. 1421–1439, doi:10.5194/cp-10-1421-2014 (englisch, Online [PDF]).
  • Francesca A. McInerney, Scott L. Wing: The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. In: Annual Review of Earth and Planetary Sciences. Band 39, Mai 2011, S. 489–516, doi:10.1146/annurev-earth-040610-133431 (englisch, Online [PDF]).
  • David R. Greenwood, James F. Basinger, Robin Y. Smith: How wet was the Arctic Eocene rainforest? Estimates of precipitation from Paleogene Arctic macrofloras. In: Geology. Band 38, Nr. 1, Januar 2010, S. 15–18, doi:10.1130/G30218.1 (englisch, Online [PDF]).
  • Mary J. Kraus, Francesca A. McInerney, Scott L. Wing, Ross Secord, Allison A. Baczynski, Jonathan I. Bloch: Paleohydrologic response to continental warming during the Paleocene–Eocene Thermal Maximum, Bighorn Basin, Wyoming. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 370, Januar 2013, S. 196–208, doi:10.1016/j.palaeo.2012.12.008 (englisch, Online [PDF]).
  • Stephen G. B. Chester, Jonathan I. Bloch, Ross Secord, Doug M. Boyer: A New Small-Bodied Species of Palaeonictis (Creodonta, Oxyaenidae) from the Paleocene-Eocene Thermal Maximum. In: Journal of Mammalian Evolution. Band 17, Nr. 4, Dezember 2010, S. 227–243, doi:10.1007/s10914-010-9141-y (englisch, Online [PDF]).
  • Ross Secord, Jonathan I. Bloch, Stephen G. B. Chester, Doug M. Boyer, Aaron R. Wood, Scott L. Wing, Mary J. Kraus, Francesca A. McInerney, John Krigbaum: Evolution of the Earliest Horses Driven by Climate Change in the Paleocene-Eocene Thermal Maximum. In: Science. Band 335, Nr. 6071, Februar 2012, S. 959–962, doi:10.1126/science.1213859 (englisch, Online).
  • Jon J. Smith, Stephen T. Hasiotis, Mary J. Kraus, Daniel T. Woody: Transient dwarfism of soil fauna during the Paleocene–Eocene Thermal Maximum. In: PNAS. Band 106, Nr. 42, Oktober 2009, S. 17655–17660, doi:10.1073/pnas.0909674106 (englisch, Online).
  • Abigail R. D. Ambrosia, William C. Clyde, Henry C. Fricke, Philip D. Gingerich, Hemmo A. Abels: Repetitive mammalian dwarfing during ancient greenhouse warming events. In: Science Advances. Band 3, Nr. 3, März 2017, doi:10.1126/sciadv.1601430 (englisch).
  • Tatsuhiko Yamaguchi, Richard D. Norris, André Bornemann: Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 346–347, Nr. 6384, August 2012, S. 130–144, doi:10.1016/j.palaeo.2012.06.004 (englisch, Online [PDF]).
  • J. P. Kenneth, L. D. Stott: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. In: Nature. Band 353, September 1991, S. 225–229, doi:10.1038/353225a0 (englisch, Online [PDF]).
  • Camilla M. Wilkinson, Morgan Ganerød, Bart W. H. Hendriks, Elizabeth A. Eide: Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP). In: Geological Society, London, Special Publications (Lyell Collection). Band 447, November 2016, S. 69–103, doi:10.1144/SP447.10 (englisch, Online).
  • Michael Storey, Robert A. Duncan, Carl C. Swisher: Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. In: Science. Band 316, Nr. 5824, April 2007, S. 587–589, doi:10.1126/science.1135274 (englisch, Online [PDF]).
  • Marcus Gutjahr, Andy Ridgwell, Philip F. Sexton, Eleni Anagnostou, Paul N. Pearson, Heiko Pälike, Richard D. Norris, Ellen Thomas, Gavin L. Foster: Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. In: Nature. Band 548, August 2017, S. 573–577, doi:10.1038/nature23646 (englisch, Online).
  • Alexander Gehler, Philip D. Gingerich, Andreas Pack: Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite. In: PNAS. Band 113, Nr. 28, Juli 2016, S. 7739–7744, doi:10.1073/pnas.1518116113 (englisch).
  • John Maclennan, Stephen M. Jones: Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters (Elsevier). Band 245, Nr. 1–2, Mai 2008, S. 65–80, doi:10.1016/j.epsl.2006.01.069 (englisch, Online).
  • John A. Higgins, Daniel P. Schrag: Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters. Nr. 345, März 2006, S. 523–537, doi:10.1016/j.epsl.2006.03.009 (englisch, Online [PDF]). Online (Memento des Originals vom 21. Oktober 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • K. J. Meissner, T. J. Bralower, K. Alexander, T. Dunkley Jones, W. Sijp, M. Ward: The Paleocene-Eocene Thermal Maximum: How much carbon is enough? In: Paleoceanography. Band 29, Nr. 10, Oktober 2014, S. 946–963, doi:10.1002/2014PA002650 (englisch, Online).
  • Richard E. Zeebe, James C. Zachos, Gerald R. Dickens: Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. In: Nature Geoscience. Band 2, Nr. 8, Juli 2009, S. 576–580, doi:10.1038/ngeo578 (englisch, Online [PDF]).
  • Christian Berndt, Sverre Planke, Carlos A. Alvarez Zarikian, Joost Frieling, Morgan T. Jones, John M. Millett, Henk Brinkhuis, Stefan Bünz, Henrik H. Svensen, Jack Longman, Reed P. Scherer, Jens Karstens, Ben Manton, Mei Nelissen, Brandon Reed, Jan Inge Faleide, Ritske S. Huismans, Amar Agarwal, Graham D. M. Andrews, Peter Betlem, Joyeeta Bhattacharya, Sayantani Chatterjee, Marialena Christopoulou, Vincent J. Clementi, Eric C. Ferré, Irina Y. Filina, Pengyuan Guo, Dustin T. Harper, Sarah Lambart, Geoffroy Mohn, Reina Nakaoka, Christian Tegner, Natalia Varela, Mengyuan Wang, Weimu Xu, Stacy L. Yager: Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum. In: Nature Geoscience. 3. August 2023, ISSN 1752-0908, S. 1–7, doi:10.1038/s41561-023-01246-8 (nature.com [abgerufen am 29. August 2023]).
  • Morgan F. Schaller, Megan K. Fung, James D. Wright, Miriam E. Katz, Dennis V. Kent: Impact ejecta at the Paleocene-Eocene boundary. In: Science. Band 354, Nr. 6309, Oktober 2016, S. 225–229, doi:10.1126/science.aaf5466 (englisch, Online [PDF]).
  • Matthias M. M. Meier, Sanna Holm-Alwmark: A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. In: Monthly Notices of the Royal Astronomical Society. Band 467, Nr. 3, Juni 2017, S. 2545–2551, doi:10.1093/mnras/stx211 (englisch).
  • Richard E. Zeebe, Gerald R. Dickens, Andy Ridgwell, Appy Sluijs, Ellen Thomas: Onset of carbon isotope excursion at the Paleocene-Eocene thermal maximum took millennia, not 13 years. In: PNAS. Band 111, Nr. 12, März 2014, doi:10.1073/pnas.1321177111 (englisch).
  • Robert M. DeConto, Simone Galeotti, Mark Pagani, David Tracy, Kevin Schaefer, Tingjun Zhang, David Pollard, David J. Beerling: Past extreme warming events linked to massive carbon release from thawing permafrost. In: Nature. Band 484, Nr. 7392, April 2012, S. 87–91, doi:10.1038/nature10929 (englisch, Online [PDF]).
  • Linda C. Ivany, Kyger C. Lohmann, Franciszek Hasiuk, Daniel B. Blake, Alexander Glass, Richard B. Aronson, Ryan M. Moody: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. In: The Geological Society of America (GSA) Bulletin. Band 120, Nr. 5/6, Juni 2008, S. 659–678, doi:10.1130/B26269.1 (englisch, Online [PDF]).
  • Richard E. Zeebe, Thomas Westerhold, Kate Littler, James C. Zachos: Orbital forcing of the Paleocene and Eocene carbon cycle. In: Paleoceanography (AGU Publications). Mai 2017, doi:10.1002/2016PA003054 (englisch, Online [PDF]).
  • Caitlin R. Keating-Bitonti, Linda C. Ivany, Hagit P. Affek, Peter Douglas, Scott D. Samson: Warm, not super-hot, temperatures in the early Eocene subtropics. In: Geology. Band 39, Nr. 8, August 2011, S. 771–774, doi:10.1130/G32054.1 (englisch, Online [PDF]).
  • Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. Band 334, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, Online [PDF]). Online (Memento des Originals vom 20. Februar 2019 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • Noah S. Diffenbaugh, Christopher B. Field: Changes in Ecologically Critical Terrestrial Climate Conditions. In: Science. Band 341, Nr. 6145, August 2013, S. 486–492, doi:10.1126/science.1237123 (englisch, Online).
  • Gerta Keller, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, Thierry Adatte: Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. In: Gondwana Research. Band 56, April 2018, S. 69–89, doi:10.1016/j.gr.2017.12.002 (englisch, Online [PDF]).
  • K. Panchuk, A. Ridgwell, L. R. Kump: Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison. In: Geology. Band 36, Nr. 4, April 2008, S. 315–318, doi:10.1130/G24474A.1 (englisch, Online).
  • Gabriel J. Bowen, Bianca J. Maibauer, Mary J. Kraus, Ursula Röhl, Thomas Westerhold, Amy Steimke, Philip D. Gingerich, Scott L. Wing, William C. Clyde: Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. In: Nature Geoscience. Band 8, Nr. 6071, Januar 2015, S. 44–47, doi:10.1038/ngeo2316 (englisch, Online [PDF]).
  • Susan Solomon, Gian-Kasper Plattner, Reto Knutti, Pierre Friedlingstein: Irreversible climate change due to carbon dioxide emissions. In: PNAS. Band 106, Nr. 6, Februar 2009, S. 1704–1709, doi:10.1073/pnas.0812721106 (englisch).
  • A. Ganopolski, R. Winkelmann, H. J. Schellnhuber: Critical insolation–CO2 relation for diagnosing past and future glacial inception. In: Nature. Band 529, Nr. 7585, Januar 2016, S. 200–203, doi:10.1038/nature16494 (englisch, Online).
  • Richard E. Zeebe: Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. In: pnas. Band 110, Nr. 34, August 2013, S. 13739–13744, doi:10.1073/pnas.1222843110 (englisch).
  • Peter U. Clark, Jeremy D. Shakun, Shaun A. Marcott, Alan C. Mix, Michael Eby, Scott Kulp, Anders Levermann, Glenn A. Milne, Patrik L. Pfister, Benjamin D. Santer, Daniel P. Schrag, Susan Solomon, Thomas F. Stocker, Benjamin H. Strauss, Andrew J. Weaver, Ricarda Winkelmann, David Archer, Edouard Bard, Aaron Goldner, Kurt Lambeck, Raymond T. Pierrehumbert, Gian-Kasper Plattner: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. In: Nature Climate Change. Band 6, April 2016, S. 360–369, doi:10.1038/nclimate2923 (englisch, Online [PDF]).
  • Timothy M. Lenton, H. Held, Elmar Kriegler, J. W. Hall, Wolfgang Lucht, Stefan Rahmstorf, Hans Joachim Schellnhuber: Tipping elements in the Earth's climate system. In: PNAS. Band 105, Nr. 6, Februar 2008, S. 1786–1793, doi:10.1073/pnas.0705414105 (englisch).
  • Susan L. Hautala, Evan A. Solomon, H. Paul Johnson, Robert N. Harris, Una K. Miller: Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. In: Geophysical Research Letters. Band 41, Nr. 23, Dezember 2014, S. 8486–8494, doi:10.1002/2014GL061606 (englisch, Online [PDF]).

europepmc.org

  • Marcus Gutjahr, Andy Ridgwell, Philip F. Sexton, Eleni Anagnostou, Paul N. Pearson, Heiko Pälike, Richard D. Norris, Ellen Thomas, Gavin L. Foster: Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. In: Nature. Band 548, August 2017, S. 573–577, doi:10.1038/nature23646 (englisch, Online).

gsapubs.org

geology.gsapubs.org

  • T. Aze, P. N. Pearson, A. J. Dickson, M. P. S. Badger, P. R. Bown, R. D. Pancost, S. J. Gibbs, B. T. Huber, M. J. Leng, A. L. Coe, A. S. Cohen, G. L. Foster: Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum. In: geology. Band 42, Nr. 9, Juli 2014, S. 739–742, doi:10.1130/G35637.1 (englisch, Online [PDF]).
  • K. Panchuk, A. Ridgwell, L. R. Kump: Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison. In: Geology. Band 36, Nr. 4, April 2008, S. 315–318, doi:10.1130/G24474A.1 (englisch, Online).

hawaii.edu

soest.hawaii.edu

  • Donald E. Penman, Bärbel Hönisch, Richard E. Zeebe, Ellen Thomas, James C. Zachos: Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. In: Oceanography. Band 29, Nr. 5, Mai 2014, S. 357–369, doi:10.1002/2014PA002621 (englisch, Online [PDF]).
  • Richard E. Zeebe, Thomas Westerhold, Kate Littler, James C. Zachos: Orbital forcing of the Paleocene and Eocene carbon cycle. In: Paleoceanography (AGU Publications). Mai 2017, doi:10.1002/2016PA003054 (englisch, Online [PDF]).

lta.org

climatechange.lta.org

  • Richard E. Zeebe, Andy Ridgwell, James C. Zachos: Anthropogenic carbon release rate unprecedented during the past 66 million years. In: Nature Geoscience. Band 9, Nr. 4, April 2016, S. 325–329, doi:10.1038/ngeo2681 (englisch, Online [PDF]).

lyellcollection.org

sp.lyellcollection.org

  • Camilla M. Wilkinson, Morgan Ganerød, Bart W. H. Hendriks, Elizabeth A. Eide: Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP). In: Geological Society, London, Special Publications (Lyell Collection). Band 447, November 2016, S. 69–103, doi:10.1144/SP447.10 (englisch, Online).

nature.com

  • Christian Berndt, Sverre Planke, Carlos A. Alvarez Zarikian, Joost Frieling, Morgan T. Jones, John M. Millett, Henk Brinkhuis, Stefan Bünz, Henrik H. Svensen, Jack Longman, Reed P. Scherer, Jens Karstens, Ben Manton, Mei Nelissen, Brandon Reed, Jan Inge Faleide, Ritske S. Huismans, Amar Agarwal, Graham D. M. Andrews, Peter Betlem, Joyeeta Bhattacharya, Sayantani Chatterjee, Marialena Christopoulou, Vincent J. Clementi, Eric C. Ferré, Irina Y. Filina, Pengyuan Guo, Dustin T. Harper, Sarah Lambart, Geoffroy Mohn, Reina Nakaoka, Christian Tegner, Natalia Varela, Mengyuan Wang, Weimu Xu, Stacy L. Yager: Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum. In: Nature Geoscience. 3. August 2023, ISSN 1752-0908, S. 1–7, doi:10.1038/s41561-023-01246-8 (nature.com [abgerufen am 29. August 2023]).
  • A. Ganopolski, R. Winkelmann, H. J. Schellnhuber: Critical insolation–CO2 relation for diagnosing past and future glacial inception. In: Nature. Band 529, Nr. 7585, Januar 2016, S. 200–203, doi:10.1038/nature16494 (englisch, Online).

nycep.org

pages.nycep.org

  • Stephen G. B. Chester, Jonathan I. Bloch, Ross Secord, Doug M. Boyer: A New Small-Bodied Species of Palaeonictis (Creodonta, Oxyaenidae) from the Paleocene-Eocene Thermal Maximum. In: Journal of Mammalian Evolution. Band 17, Nr. 4, Dezember 2010, S. 227–243, doi:10.1007/s10914-010-9141-y (englisch, Online [PDF]).

pik-potsdam.de

  • Peter U. Clark, Jeremy D. Shakun, Shaun A. Marcott, Alan C. Mix, Michael Eby, Scott Kulp, Anders Levermann, Glenn A. Milne, Patrik L. Pfister, Benjamin D. Santer, Daniel P. Schrag, Susan Solomon, Thomas F. Stocker, Benjamin H. Strauss, Andrew J. Weaver, Ricarda Winkelmann, David Archer, Edouard Bard, Aaron Goldner, Kurt Lambeck, Raymond T. Pierrehumbert, Gian-Kasper Plattner: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. In: Nature Climate Change. Band 6, April 2016, S. 360–369, doi:10.1038/nclimate2923 (englisch, Online [PDF]).

pnas.org

princeton.edu

geoweb.princeton.edu

  • Gerta Keller, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, Thierry Adatte: Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. In: Gondwana Research. Band 56, April 2018, S. 69–89, doi:10.1016/j.gr.2017.12.002 (englisch, Online [PDF]).

purdue.edu

docs.lib.purdue.edu

  • Gary Shaffer, Matthew Huber, Roberto Rondanelli, Jens Olaf Pepke Pedersen: Deep time evidence for climate sensitivity increase with warming. In: Geophysical Research Letters. Band 43, Nr. 12, Juni 2016, S. 6538–6545, doi:10.1002/2016GL069243 (englisch, Online [PDF]).

redirecter.toolforge.org

  • John A. Higgins, Daniel P. Schrag: Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters. Nr. 345, März 2006, S. 523–537, doi:10.1016/j.epsl.2006.03.009 (englisch, Online [PDF]). Online (Memento des Originals vom 21. Oktober 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. Band 334, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, Online [PDF]). Online (Memento des Originals vom 20. Februar 2019 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org

researchgate.net

  • Donald E. Penman: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. In: Geology. Band 44, Nr. 9, September 2016, S. 731–734, doi:10.1130/G37704.1 (englisch, Online [PDF]).
  • David R. Greenwood, James F. Basinger, Robin Y. Smith: How wet was the Arctic Eocene rainforest? Estimates of precipitation from Paleogene Arctic macrofloras. In: Geology. Band 38, Nr. 1, Januar 2010, S. 15–18, doi:10.1130/G30218.1 (englisch, Online [PDF]).
  • Linda C. Ivany, Kyger C. Lohmann, Franciszek Hasiuk, Daniel B. Blake, Alexander Glass, Richard B. Aronson, Ryan M. Moody: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. In: The Geological Society of America (GSA) Bulletin. Band 120, Nr. 5/6, Juni 2008, S. 659–678, doi:10.1130/B26269.1 (englisch, Online [PDF]).
  • Noah S. Diffenbaugh, Christopher B. Field: Changes in Ecologically Critical Terrestrial Climate Conditions. In: Science. Band 341, Nr. 6145, August 2013, S. 486–492, doi:10.1126/science.1237123 (englisch, Online).
  • Gabriel J. Bowen, Bianca J. Maibauer, Mary J. Kraus, Ursula Röhl, Thomas Westerhold, Amy Steimke, Philip D. Gingerich, Scott L. Wing, William C. Clyde: Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. In: Nature Geoscience. Band 8, Nr. 6071, Januar 2015, S. 44–47, doi:10.1038/ngeo2316 (englisch, Online [PDF]).

rutgers.edu

geology.rutgers.edu

  • Morgan F. Schaller, Megan K. Fung, James D. Wright, Miriam E. Katz, Dennis V. Kent: Impact ejecta at the Paleocene-Eocene boundary. In: Science. Band 354, Nr. 6309, Oktober 2016, S. 225–229, doi:10.1126/science.aaf5466 (englisch, Online [PDF]).

s3.amazonaws.com

  • Appy Sluijs, Stefan Schouten, Timme H. Donders, Petra L. Schoon, Ursula Röhl, Gert-Jan Reichart, Francesca Sangiorgi, Jung-Hyun Kim, Jaap S. Sinninghe Damsté, Henk Brinkhuis: Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. In: Nature Geoscience. Band 2, Nr. 11, Oktober 2009, S. 777–780, doi:10.1038/ngeo668 (englisch, Online [PDF]).
  • Mary J. Kraus, Francesca A. McInerney, Scott L. Wing, Ross Secord, Allison A. Baczynski, Jonathan I. Bloch: Paleohydrologic response to continental warming during the Paleocene–Eocene Thermal Maximum, Bighorn Basin, Wyoming. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 370, Januar 2013, S. 196–208, doi:10.1016/j.palaeo.2012.12.008 (englisch, Online [PDF]).

sbras.ru

ipgg.sbras.ru

  • Joost Frieling, Alina I. Iakovleva, Gert-Jan Reichart, Galina N. Aleksandrova, Zinaida N. Gnibidenko, Stefan Schouten, Appy Sluijs: Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea. In: geology. Band 42, Nr. 9, September 2014, S. 767–770, doi:10.1130/G35724.1 (englisch, Online [PDF]).

sciencedirect.com

  • John Maclennan, Stephen M. Jones: Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters (Elsevier). Band 245, Nr. 1–2, Mai 2008, S. 65–80, doi:10.1016/j.epsl.2006.01.069 (englisch, Online).

semanticscholar.org

pdfs.semanticscholar.org

  • John A. Higgins, Daniel P. Schrag: Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters. Nr. 345, März 2006, S. 523–537, doi:10.1016/j.epsl.2006.03.009 (englisch, Online [PDF]). Online (Memento des Originals vom 21. Oktober 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. Band 334, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, Online [PDF]). Online (Memento des Originals vom 20. Februar 2019 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org

si.edu

repository.si.edu

  • Francesca A. McInerney, Scott L. Wing: The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. In: Annual Review of Earth and Planetary Sciences. Band 39, Mai 2011, S. 489–516, doi:10.1146/annurev-earth-040610-133431 (englisch, Online [PDF]).

unl.edu

digitalcommons.unl.edu

  • Ross Secord, Jonathan I. Bloch, Stephen G. B. Chester, Doug M. Boyer, Aaron R. Wood, Scott L. Wing, Mary J. Kraus, Francesca A. McInerney, John Krigbaum: Evolution of the Earliest Horses Driven by Climate Change in the Paleocene-Eocene Thermal Maximum. In: Science. Band 335, Nr. 6071, Februar 2012, S. 959–962, doi:10.1126/science.1213859 (englisch, Online).

washington.edu

earthweb.ess.washington.edu

  • Susan L. Hautala, Evan A. Solomon, H. Paul Johnson, Robert N. Harris, Una K. Miller: Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. In: Geophysical Research Letters. Band 41, Nr. 23, Dezember 2014, S. 8486–8494, doi:10.1002/2014GL061606 (englisch, Online [PDF]).

web.archive.org

  • John A. Higgins, Daniel P. Schrag: Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. In: Earth and Planetary Science Letters. Nr. 345, März 2006, S. 523–537, doi:10.1016/j.epsl.2006.03.009 (englisch, Online [PDF]). Online (Memento des Originals vom 21. Oktober 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org
  • Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. Band 334, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, Online [PDF]). Online (Memento des Originals vom 20. Februar 2019 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pdfs.semanticscholar.org

wiley.com

onlinelibrary.wiley.com

  • K. J. Meissner, T. J. Bralower, K. Alexander, T. Dunkley Jones, W. Sijp, M. Ward: The Paleocene-Eocene Thermal Maximum: How much carbon is enough? In: Paleoceanography. Band 29, Nr. 10, Oktober 2014, S. 946–963, doi:10.1002/2014PA002650 (englisch, Online).

yale.edu

people.earth.yale.edu

  • Robert M. DeConto, Simone Galeotti, Mark Pagani, David Tracy, Kevin Schaefer, Tingjun Zhang, David Pollard, David J. Beerling: Past extreme warming events linked to massive carbon release from thawing permafrost. In: Nature. Band 484, Nr. 7392, April 2012, S. 87–91, doi:10.1038/nature10929 (englisch, Online [PDF]).
  • Caitlin R. Keating-Bitonti, Linda C. Ivany, Hagit P. Affek, Peter Douglas, Scott D. Samson: Warm, not super-hot, temperatures in the early Eocene subtropics. In: Geology. Band 39, Nr. 8, August 2011, S. 771–774, doi:10.1130/G32054.1 (englisch, Online [PDF]).

zdb-katalog.de

  • Christian Berndt, Sverre Planke, Carlos A. Alvarez Zarikian, Joost Frieling, Morgan T. Jones, John M. Millett, Henk Brinkhuis, Stefan Bünz, Henrik H. Svensen, Jack Longman, Reed P. Scherer, Jens Karstens, Ben Manton, Mei Nelissen, Brandon Reed, Jan Inge Faleide, Ritske S. Huismans, Amar Agarwal, Graham D. M. Andrews, Peter Betlem, Joyeeta Bhattacharya, Sayantani Chatterjee, Marialena Christopoulou, Vincent J. Clementi, Eric C. Ferré, Irina Y. Filina, Pengyuan Guo, Dustin T. Harper, Sarah Lambart, Geoffroy Mohn, Reina Nakaoka, Christian Tegner, Natalia Varela, Mengyuan Wang, Weimu Xu, Stacy L. Yager: Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum. In: Nature Geoscience. 3. August 2023, ISSN 1752-0908, S. 1–7, doi:10.1038/s41561-023-01246-8 (nature.com [abgerufen am 29. August 2023]).