Fernando P. Polack et al.: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. In: The New England Journal of Medicine. Band383, Nr.27, 31. Dezember 2020, S.2603–2615, doi:10.1056/NEJMoa2034577, PMID 33301246, PMC 7745181 (freier Volltext).
Ugur Sahin et al.: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. In: Nature. Band547, Nr.7662, 13. Juli 2017, S.222–226, doi:10.1038/nature23003, PMID 28678784.
Martin Alberer et al.: Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. In: The Lancet. Band390, Nr.10101, Juli 2017, S.1511–1520, doi:10.1016/S0140-6736(17)31665-3.
Norbert Pardi et al.: Recent advances in mRNA vaccine technology. In: Current Opinion in Immunology. Band65, August 2020, S.14–20, doi:10.1016/j.coi.2020.01.008.
Norbert Pardi et al.: mRNA vaccines – a new era in vaccinology. In: Nature Reviews Drug Discovery. Band17, April 2018, S.261–279, doi:10.1038/nrd.2017.243.
S. Brenner, F. Jacob, M. Meselson: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. In: Nature. Band 190, Mai 1961, S. 576–581, doi:10.1038/190576a0, PMID 20446365.
C. D. Lane, G. Marbaix, J. B. Gurdon: Rabbit haemoglobin synthesis in frog cells: the translation of reticulocyte 9 s RNA in frog oocytes. In: Journal of Molecular Biology. Band61, Nr.1, 14. Oktober 1971, ISSN0022-2836, S.73–91, doi:10.1016/0022-2836(71)90207-5 (sciencedirect.com [abgerufen am 31. Dezember 2021]).
G. J. Dimitriadis: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. In: Nature. Band 274, Nummer 5674, August 1978, S. 923–924; doi:10.1038/274923a0, PMID 683336.
Marc J. Ostro, Dario Giacomoni, Don Lavelle, William Paxton, Sheldon Dray: Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. In: Nature. Band274, Nr.5674, August 1978, ISSN1476-4687, S.921–923, doi:10.1038/274921a0 (nature.com [abgerufen am 31. Dezember 2021]).
J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, P. L. Felgner: Direct gene transfer into mouse muscle in vivo. In: Science. Band 247, Nr. 4949, Teil 1, März 1990, S. 1465–1468; doi:10.1126/science.1690918, PMID 1690918.
P. Löffler: Review: Vaccine Myth-Buster – Cleaning Up With Prejudices and Dangerous Misinformation. In: Frontiers in immunology. Band 12, 2021, S. 663280, doi:10.3389/fimmu.2021.663280, PMID 34177902, PMC 8222972 (freier Volltext).
F. Martinon, S. Krishnan, G. Lenzen, R. Magné, E. Gomard, J. G. Guillet, J. P. Lévy, P. Meulien: Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. In: European journal of immunology. Band 23, Nr. 7, Juli 1993, S. 1719–1722; doi:10.1002/eji.1830230749, PMID 8325342.
X. Zhou, P. Berglund, G. Rhodes, S. E. Parker, M. Jondal, P. Liljeström: Self-replicating Semliki Forest virus RNA as recombinant vaccine. In: Vaccine. Band 12, Nr. 16, Dezember 1994, S. 1510–1514; doi:10.1016/0264-410x(94)90074-4, PMID 7879415.
P. Borah, P. K. Deb, N. A. Al-Shar'i, L. A. Dahabiyeh, K. N. Venugopala, V. Singh, P. Shinu, S. Hussain, S. Deka, B. Chandrasekaran, D. M. Jaradat: Perspectives on RNA Vaccine Candidates for COVID-19. In: Frontiers in Molecular Biosciences. Band 8, 2021, S. 635245, doi:10.3389/fmolb.2021.635245, PMID 33869282, PMC 8044912 (freier Volltext).
K. Karikó, M. Buckstein, H. Ni, D. Weissman: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. In: Immunity. Band 23, Nr. 2, August 2005, S. 165–175; doi:10.1016/j.immuni.2005.06.008, PMID 16111635.
M. A. McNamara et al.: RNA-Based Vaccines in Cancer Immunotherapy. In: Journal of immunology research. Band 2015, 2015, S. 794528; doi:10.1155/2015/794528, PMID 26665011, PMC 4668311 (freier Volltext).
Namit Chaudhary et al.: mRNA vaccines for infectious diseases: principles, delivery and clinical translation. In: Nature Reviews Drug Discovery. 25. August 2021, S.1–22, doi:10.1038/s41573-021-00283-5.
D. Pushparajah, S. Jimenez, S. Wong, H. Alattas, N. Nafissi, R. A. Slavcev: Advances in gene-based vaccine platforms to address the COVID-19 pandemic. In: Advanced drug delivery reviews. Band 170, 03 2021, S. 113–141; doi:10.1016/j.addr.2021.01.003, PMID 33422546, PMC 7789827 (freier Volltext).
C. Poveda, A. B. Biter, M. E. Bottazzi, U. Strych: Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. In: Vaccines. Band 7, Nr. 4, September 2019, S. , doi:10.3390/vaccines7040131, PMID 31569760, PMC 6963847 (freier Volltext).
M. A. Marć, E. Domínguez-Álvarez, C. Gamazo: Nucleic acid vaccination strategies against infectious diseases. In: Expert opinion on drug delivery. Band 12, Nr. 12, 2015, S. 1851–1865, doi:10.1517/17425247.2015.1077559, PMID 26365499.
A. Rodríguez-Gascón, A. del Pozo-Rodríguez, M. Solinís: Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. In: International journal of nanomedicine. Band 9, 2014, S. 1833–1843; doi:10.2147/IJN.S39810, PMID 24748793, PMC 3986288 (freier Volltext).
K. C. McCullough, P. Milona, L. Thomann-Harwood, T. Démoulins, P. Englezou, R. Suter, N. Ruggli: Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. In: Vaccines. Band 2, Nr. 4, Oktober 2014, S. 735–754, doi:10.3390/vaccines2040735, PMID 26344889, PMC 4494254 (freier Volltext).
A. B. Vogel, L. Lambert, E. Kinnear et al.: Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. In: Molecular therapy: the journal of the American Society of Gene Therapy. Band 26, Nr. 2, 02 2018, S. 446–455, doi:10.1016/j.ymthe.2017.11.017, PMID 29275847, PMC 5835025 (freier Volltext).
N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman: mRNA vaccines – a new era in vaccinology. In: Nature reviews. Drug discovery. Band 17, Nr. 4, 04 2018, S. 261–279, doi:10.1038/nrd.2017.243, PMID 29326426, PMC 5906799 (freier Volltext).
Rein Verbeke, Ine Lentacker, Stefaan C. De Smedt, Heleen Dewitte: Three decades of messenger RNA vaccine development. In: Nano Today. Nr. 28, 2019, S. 100766; doi:10.1016/j.nantod.2019.100766.
K. Karikó, H. Muramatsu, J. Ludwig, D. Weissman: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. In: Nucleic acids research. Band 39, Nummer 21, November 2011, S. e142, doi:10.1093/nar/gkr695, PMID 21890902, PMC 3241667 (freier Volltext).
D. R. Gallie: The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. In: Genes & development. Band 5, Nummer 11, November 1991, S. 2108–2116; doi:10.1101/gad.5.11.2108, PMID 1682219.
M. Kozak: An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. In: Nucleic acids research. Band 15, Nummer 20, Oktober 1987, S. 8125–8148, doi:10.1093/nar/15.20.8125, PMID 3313277, PMC 306349 (freier Volltext).
Alexandra G. Orlandini von Niessen et al.: Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening. In: Molecular Therapy: The Journal of the American Society of Gene Therapy. Band27, Nr.4, 10. April 2019, S.824–836, doi:10.1016/j.ymthe.2018.12.011, PMID 30638957, PMC 6453560 (freier Volltext).
K. E. Broderick, L. M. Humeau: Electroporation-enhanced delivery of nucleic acid vaccines. In: Expert review of vaccines. Band 14, Nr. 2, Februar 2015, S. 195–204; doi:10.1586/14760584.2015.990890, PMID 25487734.
D. Benteyn, C. Heirman, A. Bonehill, K. Thielemans, K. Breckpot: mRNA-based dendritic cell vaccines. In: Expert review of vaccines. Band 14, Nr. 2, Februar 2015, S. 161–176, doi:10.1586/14760584.2014.957684, PMID 25196947.
A. M. Reichmuth, M. A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein: mRNA vaccine delivery using lipid nanoparticles. In: Therapeutic delivery. Band 7, Nr. 5, 2016, S. 319–334, doi:10.4155/tde-2016-0006, PMID 27075952, PMC 5439223 (freier Volltext).
Gómez-Aguado, Rodríguez-Castejón, Vicente-Pascual, Rodríguez-Gascón, Ángeles Solinís, Pozo-Rodríguez: Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives In: Nanomaterials. 20. Februar 2020, doi:10.3390/nano10020364.
V. K. Udhayakumar, A. De Beuckelaer, J. McCaffrey et al.: Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide. In: Advanced healthcare materials. Band 6, Nr. 13, Juli 2017, doi:10.1002/adhm.201601412, PMID 28436620.
B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder, T. K. Eigentler, G. Pawelec, I. Hoerr, H. G. Rammensee, C. Garbe: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. In: Journal of immunotherapy. Band 32, Nummer 5, Juni 2009, S. 498–507, doi:10.1097/CJI.0b013e3181a00068, PMID 19609242.
T. Démoulins, P. C. Englezou, P. Milona, N. Ruggli, N. Tirelli, C. Pichon, C. Sapet, T. Ebensen, C. A. Guzmán, K. C. McCullough: Self-Replicating RNA Vaccine Delivery to Dendritic Cells. In: Methods in molecular biology. Band 1499, 2017, S. 37–75, doi:10.1007/978-1-4939-6481-9_3, PMID 27987142.
D. J. Crommelin, T. J. Anchordoquy, D. B. Volkin, W. Jiskoot, E. Mastrobattista: Addressing the Cold Reality of mRNA Vaccine Stability. In: Journal of pharmaceutical sciences. Band 110, Nummer 3, 03 2021, S. 997–1001, doi:10.1016/j.xphs.2020.12.006, PMID 33321139, PMC 7834447 (freier Volltext).
J. Probst, B. Weide, B. Scheel, B. J. Pichler, I. Hoerr, H. G. Rammensee, S. Pascolo: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. In: Gene therapy. Band 14, Nr. 15, August 2007, S. 1175–1180, doi:10.1038/sj.gt.3302964, PMID 17476302.
C. Lorenz, M. Fotin-Mleczek, G. Roth, C. Becker, T. C. Dam, W. P. Verdurmen, R. Brock, J. Probst, T. Schlake: Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. In: RNA biology. Band 8, Nr. 4, 2011 Juli-August, S. 627–636, doi:10.4161/rna.8.4.15394, PMID 21654214.
K. Paunovska, C. D. Sago, C. M. Monaco, W. H. Hudson et al.: A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation. In: Nano letters. Band 18, Nr. 3, 03 2018, S. 2148–2157, doi:10.1021/acs.nanolett.8b00432, PMID 29489381, PMC 6054134 (freier Volltext).
Thomas Hinz et al.: The European Regulatory Environment of RNA-Based Vaccines. In: Methods in Molecular Biology (Clifton, N.J.). Band1499, 2017, S.203–222, doi:10.1007/978-1-4939-6481-9_13, PMID 27987152.
Katalin Karikó, H. Muramatsu, J. Ludwig, D. Weissman: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. In: Nucleic acids research. Band 39, Nr. 21, November 2011, S. e142, doi:10.1093/nar/gkr695, PMID 21890902, PMC 3241667 (freier Volltext).
M. Fotin-Mleczek, K. M. Duchardt, C. Lorenz, R. Pfeiffer, S. Ojkić-Zrna, J. Probst, K. J. Kallen: Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. In: Journal of immunotherapy. Band 34, Nr. 1, Januar 2011, S. 1–15, doi:10.1097/CJI.0b013e3181f7dbe8, PMID 21150709.
A. Thess, S. Grund, B. L. Mui, M. J. Hope, P. Baumhof, M. Fotin-Mleczek, T. Schlake: Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. In: Molecular therapy: the journal of the American Society of Gene Therapy. Band 23, Nr. 9, September 2015, S. 1456–1464, doi:10.1038/mt.2015.103, PMID 26050989, PMC 4817881 (freier Volltext).
L. Warren, P. D. Manos, T. Ahfeldt et al.: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. In: Cell stem cell. Band 7, Nr. 5, November 2010, S. 618–630, doi:10.1016/j.stem.2010.08.012, PMID 20888316, PMC 3656821 (freier Volltext).
Christina Krienke et al.: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. In: Science (New York, N.Y.). Band371, Nr.6525, 8. Januar 2021, S.145–153, doi:10.1126/science.aay3638, PMID 33414215.
K. Karikó, M. Buckstein, H. Ni, D. Weissman: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. In: Immunity. Band 23, Nr. 2, August 2005, S. 165–175, doi:10.1016/j.immuni.2005.06.008, PMID 16111635.
N. Pardi, D. Weissman: Nucleoside Modified mRNA Vaccines for Infectious Diseases. In: Methods in molecular biology. Band 1499, 2017, S. 109–121, doi:10.1007/978-1-4939-6481-9_6, PMID 27987145.
N. Pardi, M. J. Hogan, D. Weissman: Recent advances in mRNA vaccine technology. In: Current opinion in immunology. [elektronische Veröffentlichung vor dem Druck] März 2020, doi:10.1016/j.coi.2020.01.008, PMID 32244193.
M. Baiersdörfer, G. Boros, H. Muramatsu, A. Mahiny, I. Vlatkovic, U. Sahin, K. Karikó: A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. In: Molecular therapy. Nucleic acids. Band 15, April 2019, S. 26–35, doi:10.1016/j.omtn.2019.02.018, PMID 30933724, PMC 6444222 (freier Volltext).
K. Bloom, F. van den Berg, P. Arbuthnot: Self-amplifying RNA vaccines for infectious diseases. In: Gene therapy. Band 28, Nr. 3–4, April 2021, S. 117–129, doi:10.1038/s41434-020-00204-y, PMID 33093657, PMC 7580817 (freier Volltext).
Z. Wu, T. Li: Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. In: Pharmaceutical research. Band 38, Nummer 3, März 2021, S. 473–478, doi:10.1007/s11095-021-03015-x, PMID 33660201, PMC 7928182 (freier Volltext).
T. Schlake, A. Thess, M. Fotin-Mleczek, K. J. Kallen: Developing mRNA-vaccine technologies. In: RNA biology. Band 9, Nr. 11, November 2012, S. 1319–1330, doi:10.4161/rna.22269, PMID 23064118, PMC 3597572 (freier Volltext).
S. C. Tan, B. C. Yiap: DNA, RNA, and protein extraction: the past and the present. In: Journal of biomedicine & biotechnology. Band 2009, 2009, S. 574398, doi:10.1155/2009/574398, PMID 20011662, PMC 2789530 (freier Volltext).
Elie Dolgin: How COVID unlocked the power of RNA vaccines. In: Nature. Band589, Nr.7841, 14. Januar 2021, ISSN0028-0836, S.189–191, doi:10.1038/d41586-021-00019-w (nature.com [abgerufen am 14. März 2021] deutsche Übersetzung unter dem Titel Siegeszug der RNA-Impfstoffe. In: Spektrum der Wissenschaft. Heft 3/2021, S. 53–57).
Benjamin Weide et al.: Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. In: Journal of Immunotherapy (Hagerstown MD 1997). Band31, Nr.2, Februar 2008, S.180–188, doi:10.1097/CJI.0b013e31815ce501, PMID 18481387.
Benjamin Weide et al.: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. In: Journal of Immunotherapy (Hagerstown MD 1997). Band32, Nr.5, Juni 2009, S.498–507, doi:10.1097/CJI.0b013e3181a00068, PMID 19609242.
Megan A. McNamara et al.: RNA-Based Vaccines in Cancer Immunotherapy. In: Journal of Immunology Research. Band2015, 2015, doi:10.1155/2015/794528, PMID 26665011, PMC 4668311 (freier Volltext).
N. Armbruster, E. Jasny, B. Petsch: Advances in RNA Vaccines for Preventive Indications: A Case Study of A Vaccine Against Rabies. In: Vaccines. Band 7, Nr. 4, September 2019, doi:10.3390/vaccines7040132, PMID 31569785, PMC 6963972 (freier Volltext).
Nicole Armbruster et al.: Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. In: Vaccines. Band7, Nr.4, Dezember 2019, S.132, doi:10.3390/vaccines7040132.
Marc J. Ostro, Dario Giacomoni, Don Lavelle, William Paxton, Sheldon Dray: Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. In: Nature. Band274, Nr.5674, August 1978, ISSN1476-4687, S.921–923, doi:10.1038/274921a0 (nature.com [abgerufen am 31. Dezember 2021]).
Elie Dolgin: How COVID unlocked the power of RNA vaccines. In: Nature. Band589, Nr.7841, 14. Januar 2021, ISSN0028-0836, S.189–191, doi:10.1038/d41586-021-00019-w (nature.com [abgerufen am 14. März 2021] deutsche Übersetzung unter dem Titel Siegeszug der RNA-Impfstoffe. In: Spektrum der Wissenschaft. Heft 3/2021, S. 53–57).
U. Elia, S. Ramishetti, R. Rosenfeld u. a.: Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered via Lipid Nanoparticles. In: ACS Nano. 22. Juni 2021, Band 15, Nr. 6, S. 9627–9637, PMID 33480671.
Fernando P. Polack et al.: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. In: The New England Journal of Medicine. Band383, Nr.27, 31. Dezember 2020, S.2603–2615, doi:10.1056/NEJMoa2034577, PMID 33301246, PMC 7745181 (freier Volltext).
Ugur Sahin et al.: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. In: Nature. Band547, Nr.7662, 13. Juli 2017, S.222–226, doi:10.1038/nature23003, PMID 28678784.
S. Brenner, F. Jacob, M. Meselson: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. In: Nature. Band 190, Mai 1961, S. 576–581, doi:10.1038/190576a0, PMID 20446365.
G. J. Dimitriadis: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. In: Nature. Band 274, Nummer 5674, August 1978, S. 923–924; doi:10.1038/274923a0, PMID 683336.
J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, P. L. Felgner: Direct gene transfer into mouse muscle in vivo. In: Science. Band 247, Nr. 4949, Teil 1, März 1990, S. 1465–1468; doi:10.1126/science.1690918, PMID 1690918.
P. Löffler: Review: Vaccine Myth-Buster – Cleaning Up With Prejudices and Dangerous Misinformation. In: Frontiers in immunology. Band 12, 2021, S. 663280, doi:10.3389/fimmu.2021.663280, PMID 34177902, PMC 8222972 (freier Volltext).
F. Martinon, S. Krishnan, G. Lenzen, R. Magné, E. Gomard, J. G. Guillet, J. P. Lévy, P. Meulien: Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. In: European journal of immunology. Band 23, Nr. 7, Juli 1993, S. 1719–1722; doi:10.1002/eji.1830230749, PMID 8325342.
X. Zhou, P. Berglund, G. Rhodes, S. E. Parker, M. Jondal, P. Liljeström: Self-replicating Semliki Forest virus RNA as recombinant vaccine. In: Vaccine. Band 12, Nr. 16, Dezember 1994, S. 1510–1514; doi:10.1016/0264-410x(94)90074-4, PMID 7879415.
R. M. Conry, A. F. LoBuglio, M. Wright, L. Sumerel, M. J. Pike, F. Johanning, R. Benjamin, D. Lu, D. T. Curiel: Characterization of a messenger RNA polynucleotide vaccine vector. In: Cancer Research. Band 55, Nummer 7, April 1995, S. 1397–1400, PMID 7882341.
P. Borah, P. K. Deb, N. A. Al-Shar'i, L. A. Dahabiyeh, K. N. Venugopala, V. Singh, P. Shinu, S. Hussain, S. Deka, B. Chandrasekaran, D. M. Jaradat: Perspectives on RNA Vaccine Candidates for COVID-19. In: Frontiers in Molecular Biosciences. Band 8, 2021, S. 635245, doi:10.3389/fmolb.2021.635245, PMID 33869282, PMC 8044912 (freier Volltext).
K. Karikó, M. Buckstein, H. Ni, D. Weissman: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. In: Immunity. Band 23, Nr. 2, August 2005, S. 165–175; doi:10.1016/j.immuni.2005.06.008, PMID 16111635.
M. A. McNamara et al.: RNA-Based Vaccines in Cancer Immunotherapy. In: Journal of immunology research. Band 2015, 2015, S. 794528; doi:10.1155/2015/794528, PMID 26665011, PMC 4668311 (freier Volltext).
D. Pushparajah, S. Jimenez, S. Wong, H. Alattas, N. Nafissi, R. A. Slavcev: Advances in gene-based vaccine platforms to address the COVID-19 pandemic. In: Advanced drug delivery reviews. Band 170, 03 2021, S. 113–141; doi:10.1016/j.addr.2021.01.003, PMID 33422546, PMC 7789827 (freier Volltext).
C. Poveda, A. B. Biter, M. E. Bottazzi, U. Strych: Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. In: Vaccines. Band 7, Nr. 4, September 2019, S. , doi:10.3390/vaccines7040131, PMID 31569760, PMC 6963847 (freier Volltext).
M. A. Marć, E. Domínguez-Álvarez, C. Gamazo: Nucleic acid vaccination strategies against infectious diseases. In: Expert opinion on drug delivery. Band 12, Nr. 12, 2015, S. 1851–1865, doi:10.1517/17425247.2015.1077559, PMID 26365499.
A. Rodríguez-Gascón, A. del Pozo-Rodríguez, M. Solinís: Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. In: International journal of nanomedicine. Band 9, 2014, S. 1833–1843; doi:10.2147/IJN.S39810, PMID 24748793, PMC 3986288 (freier Volltext).
K. C. McCullough, P. Milona, L. Thomann-Harwood, T. Démoulins, P. Englezou, R. Suter, N. Ruggli: Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. In: Vaccines. Band 2, Nr. 4, Oktober 2014, S. 735–754, doi:10.3390/vaccines2040735, PMID 26344889, PMC 4494254 (freier Volltext).
A. B. Vogel, L. Lambert, E. Kinnear et al.: Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. In: Molecular therapy: the journal of the American Society of Gene Therapy. Band 26, Nr. 2, 02 2018, S. 446–455, doi:10.1016/j.ymthe.2017.11.017, PMID 29275847, PMC 5835025 (freier Volltext).
N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman: mRNA vaccines – a new era in vaccinology. In: Nature reviews. Drug discovery. Band 17, Nr. 4, 04 2018, S. 261–279, doi:10.1038/nrd.2017.243, PMID 29326426, PMC 5906799 (freier Volltext).
K. Karikó, H. Muramatsu, J. Ludwig, D. Weissman: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. In: Nucleic acids research. Band 39, Nummer 21, November 2011, S. e142, doi:10.1093/nar/gkr695, PMID 21890902, PMC 3241667 (freier Volltext).
D. R. Gallie: The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. In: Genes & development. Band 5, Nummer 11, November 1991, S. 2108–2116; doi:10.1101/gad.5.11.2108, PMID 1682219.
M. Kozak: An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. In: Nucleic acids research. Band 15, Nummer 20, Oktober 1987, S. 8125–8148, doi:10.1093/nar/15.20.8125, PMID 3313277, PMC 306349 (freier Volltext).
Alexandra G. Orlandini von Niessen et al.: Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening. In: Molecular Therapy: The Journal of the American Society of Gene Therapy. Band27, Nr.4, 10. April 2019, S.824–836, doi:10.1016/j.ymthe.2018.12.011, PMID 30638957, PMC 6453560 (freier Volltext).
K. E. Broderick, L. M. Humeau: Electroporation-enhanced delivery of nucleic acid vaccines. In: Expert review of vaccines. Band 14, Nr. 2, Februar 2015, S. 195–204; doi:10.1586/14760584.2015.990890, PMID 25487734.
D. Benteyn, C. Heirman, A. Bonehill, K. Thielemans, K. Breckpot: mRNA-based dendritic cell vaccines. In: Expert review of vaccines. Band 14, Nr. 2, Februar 2015, S. 161–176, doi:10.1586/14760584.2014.957684, PMID 25196947.
A. M. Reichmuth, M. A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein: mRNA vaccine delivery using lipid nanoparticles. In: Therapeutic delivery. Band 7, Nr. 5, 2016, S. 319–334, doi:10.4155/tde-2016-0006, PMID 27075952, PMC 5439223 (freier Volltext).
V. K. Udhayakumar, A. De Beuckelaer, J. McCaffrey et al.: Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide. In: Advanced healthcare materials. Band 6, Nr. 13, Juli 2017, doi:10.1002/adhm.201601412, PMID 28436620.
B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder, T. K. Eigentler, G. Pawelec, I. Hoerr, H. G. Rammensee, C. Garbe: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. In: Journal of immunotherapy. Band 32, Nummer 5, Juni 2009, S. 498–507, doi:10.1097/CJI.0b013e3181a00068, PMID 19609242.
T. Démoulins, P. C. Englezou, P. Milona, N. Ruggli, N. Tirelli, C. Pichon, C. Sapet, T. Ebensen, C. A. Guzmán, K. C. McCullough: Self-Replicating RNA Vaccine Delivery to Dendritic Cells. In: Methods in molecular biology. Band 1499, 2017, S. 37–75, doi:10.1007/978-1-4939-6481-9_3, PMID 27987142.
D. J. Crommelin, T. J. Anchordoquy, D. B. Volkin, W. Jiskoot, E. Mastrobattista: Addressing the Cold Reality of mRNA Vaccine Stability. In: Journal of pharmaceutical sciences. Band 110, Nummer 3, 03 2021, S. 997–1001, doi:10.1016/j.xphs.2020.12.006, PMID 33321139, PMC 7834447 (freier Volltext).
J. Probst, B. Weide, B. Scheel, B. J. Pichler, I. Hoerr, H. G. Rammensee, S. Pascolo: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. In: Gene therapy. Band 14, Nr. 15, August 2007, S. 1175–1180, doi:10.1038/sj.gt.3302964, PMID 17476302.
C. Lorenz, M. Fotin-Mleczek, G. Roth, C. Becker, T. C. Dam, W. P. Verdurmen, R. Brock, J. Probst, T. Schlake: Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. In: RNA biology. Band 8, Nr. 4, 2011 Juli-August, S. 627–636, doi:10.4161/rna.8.4.15394, PMID 21654214.
K. Paunovska, C. D. Sago, C. M. Monaco, W. H. Hudson et al.: A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation. In: Nano letters. Band 18, Nr. 3, 03 2018, S. 2148–2157, doi:10.1021/acs.nanolett.8b00432, PMID 29489381, PMC 6054134 (freier Volltext).
S. E. McNeil, A. Vangala, V. W. Bramwell, P. J. Hanson, Y. Perrie: Lipoplexes formulation and optimisation: in vitro transfection studies reveal no correlation with in vivo vaccination studies. In: Current Drug Delivery. 2010, Band 7, Nr. 2, S. 175–187, PMID 20158478.
Thomas Hinz et al.: The European Regulatory Environment of RNA-Based Vaccines. In: Methods in Molecular Biology (Clifton, N.J.). Band1499, 2017, S.203–222, doi:10.1007/978-1-4939-6481-9_13, PMID 27987152.
Katalin Karikó, H. Muramatsu, J. Ludwig, D. Weissman: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. In: Nucleic acids research. Band 39, Nr. 21, November 2011, S. e142, doi:10.1093/nar/gkr695, PMID 21890902, PMC 3241667 (freier Volltext).
M. Fotin-Mleczek, K. M. Duchardt, C. Lorenz, R. Pfeiffer, S. Ojkić-Zrna, J. Probst, K. J. Kallen: Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. In: Journal of immunotherapy. Band 34, Nr. 1, Januar 2011, S. 1–15, doi:10.1097/CJI.0b013e3181f7dbe8, PMID 21150709.
A. Thess, S. Grund, B. L. Mui, M. J. Hope, P. Baumhof, M. Fotin-Mleczek, T. Schlake: Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. In: Molecular therapy: the journal of the American Society of Gene Therapy. Band 23, Nr. 9, September 2015, S. 1456–1464, doi:10.1038/mt.2015.103, PMID 26050989, PMC 4817881 (freier Volltext).
L. Warren, P. D. Manos, T. Ahfeldt et al.: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. In: Cell stem cell. Band 7, Nr. 5, November 2010, S. 618–630, doi:10.1016/j.stem.2010.08.012, PMID 20888316, PMC 3656821 (freier Volltext).
Christina Krienke et al.: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. In: Science (New York, N.Y.). Band371, Nr.6525, 8. Januar 2021, S.145–153, doi:10.1126/science.aay3638, PMID 33414215.
K. Karikó, M. Buckstein, H. Ni, D. Weissman: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. In: Immunity. Band 23, Nr. 2, August 2005, S. 165–175, doi:10.1016/j.immuni.2005.06.008, PMID 16111635.
N. Pardi, D. Weissman: Nucleoside Modified mRNA Vaccines for Infectious Diseases. In: Methods in molecular biology. Band 1499, 2017, S. 109–121, doi:10.1007/978-1-4939-6481-9_6, PMID 27987145.
N. Pardi, M. J. Hogan, D. Weissman: Recent advances in mRNA vaccine technology. In: Current opinion in immunology. [elektronische Veröffentlichung vor dem Druck] März 2020, doi:10.1016/j.coi.2020.01.008, PMID 32244193.
M. Baiersdörfer, G. Boros, H. Muramatsu, A. Mahiny, I. Vlatkovic, U. Sahin, K. Karikó: A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. In: Molecular therapy. Nucleic acids. Band 15, April 2019, S. 26–35, doi:10.1016/j.omtn.2019.02.018, PMID 30933724, PMC 6444222 (freier Volltext).
K. Bloom, F. van den Berg, P. Arbuthnot: Self-amplifying RNA vaccines for infectious diseases. In: Gene therapy. Band 28, Nr. 3–4, April 2021, S. 117–129, doi:10.1038/s41434-020-00204-y, PMID 33093657, PMC 7580817 (freier Volltext).
Z. Wu, T. Li: Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. In: Pharmaceutical research. Band 38, Nummer 3, März 2021, S. 473–478, doi:10.1007/s11095-021-03015-x, PMID 33660201, PMC 7928182 (freier Volltext).
T. Schlake, A. Thess, M. Fotin-Mleczek, K. J. Kallen: Developing mRNA-vaccine technologies. In: RNA biology. Band 9, Nr. 11, November 2012, S. 1319–1330, doi:10.4161/rna.22269, PMID 23064118, PMC 3597572 (freier Volltext).
S. C. Tan, B. C. Yiap: DNA, RNA, and protein extraction: the past and the present. In: Journal of biomedicine & biotechnology. Band 2009, 2009, S. 574398, doi:10.1155/2009/574398, PMID 20011662, PMC 2789530 (freier Volltext).
Benjamin Weide et al.: Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. In: Journal of Immunotherapy (Hagerstown MD 1997). Band31, Nr.2, Februar 2008, S.180–188, doi:10.1097/CJI.0b013e31815ce501, PMID 18481387.
Benjamin Weide et al.: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. In: Journal of Immunotherapy (Hagerstown MD 1997). Band32, Nr.5, Juni 2009, S.498–507, doi:10.1097/CJI.0b013e3181a00068, PMID 19609242.
Megan A. McNamara et al.: RNA-Based Vaccines in Cancer Immunotherapy. In: Journal of Immunology Research. Band2015, 2015, doi:10.1155/2015/794528, PMID 26665011, PMC 4668311 (freier Volltext).
N. Armbruster, E. Jasny, B. Petsch: Advances in RNA Vaccines for Preventive Indications: A Case Study of A Vaccine Against Rabies. In: Vaccines. Band 7, Nr. 4, September 2019, doi:10.3390/vaccines7040132, PMID 31569785, PMC 6963972 (freier Volltext).
Francesco Berlanda Scorza, Norbert Pardi: New Kids on the Block: RNA-Based Influenza Virus Vaccines. 1. April 2018, PMC 6027361 (freier Volltext).
gsrs.ncats.nih.gov
GSRS - AP7FFK83RM. In: gsrs.ncats.nih.gov. Abgerufen am 9. September 2023 (englisch).
FAQ – Häufig gestellte Fragen. Paul-Ehrlich-Institut, 17. Dezember 2020, abgerufen am 20. Dezember 2020 (unter „Sind bereits humane mRNA-Impfstoffe zugelassen?“): „Für mehrere Kandidaten, insbesondere therapeutische Impfstoffe gegen Krebserkrankungen, laufen klinische Prüfungen. Bislang ist aber kein humaner mRNA-Impfstoff zugelassen.“
FAQ zum Presse-Briefing des Paul-Ehrlich-Instituts. Paul-Ehrlich-Institut, 22. April 2020, S. 5 (Volltext als PDF).
pharmazeutische-zeitung.de
Nicole Schuster: mRNA-Vakzine – Impfen mit Genen. In: Pharmazeutische Zeitung. Ausgabe 21/2018; auf: pharmazeutische-zeitung.de; abgerufen am 4. Februar 2021.
Impfen mit Genen. Auf: pharmazeutische-zeitung.de, abgerufen am 17. Juli 2020.
C. D. Lane, G. Marbaix, J. B. Gurdon: Rabbit haemoglobin synthesis in frog cells: the translation of reticulocyte 9 s RNA in frog oocytes. In: Journal of Molecular Biology. Band61, Nr.1, 14. Oktober 1971, ISSN0022-2836, S.73–91, doi:10.1016/0022-2836(71)90207-5 (sciencedirect.com [abgerufen am 31. Dezember 2021]).
C. D. Lane, G. Marbaix, J. B. Gurdon: Rabbit haemoglobin synthesis in frog cells: the translation of reticulocyte 9 s RNA in frog oocytes. In: Journal of Molecular Biology. Band61, Nr.1, 14. Oktober 1971, ISSN0022-2836, S.73–91, doi:10.1016/0022-2836(71)90207-5 (sciencedirect.com [abgerufen am 31. Dezember 2021]).
Marc J. Ostro, Dario Giacomoni, Don Lavelle, William Paxton, Sheldon Dray: Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. In: Nature. Band274, Nr.5674, August 1978, ISSN1476-4687, S.921–923, doi:10.1038/274921a0 (nature.com [abgerufen am 31. Dezember 2021]).
Elie Dolgin: How COVID unlocked the power of RNA vaccines. In: Nature. Band589, Nr.7841, 14. Januar 2021, ISSN0028-0836, S.189–191, doi:10.1038/d41586-021-00019-w (nature.com [abgerufen am 14. März 2021] deutsche Übersetzung unter dem Titel Siegeszug der RNA-Impfstoffe. In: Spektrum der Wissenschaft. Heft 3/2021, S. 53–57).