Παραγωγικό αντιπαραθετικό δίκτυο (Greek Wikipedia)

Analysis of information sources in references of the Wikipedia article "Παραγωγικό αντιπαραθετικό δίκτυο" in Greek language version.

refsWebsite
Global rank Greek rank
2nd place
3rd place
18th place
57th place
4th place
4th place
low place
low place
low place
low place
9th place
31st place
1,559th place
1,494th place
383rd place
2,005th place
low place
low place
54th place
103rd place
low place
low place
1,283rd place
2,998th place
993rd place
637th place
1,216th place
7,365th place
5th place
8th place
1,959th place
758th place
5,701st place
low place
low place
low place
272nd place
562nd place
1,943rd place
3,891st place
8,920th place
9,806th place
896th place
1,055th place
415th place
412th place
488th place
502nd place
69th place
279th place
193rd place
709th place

arxiv.org

cdotrends.com

cern.ch

atlas.web.cern.ch

cnet.com

columbia.edu

cs.columbia.edu

courierpress.com

doi.org

dx.doi.org

  • Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan (2017-02-01). «Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit». Monthly Notices of the Royal Astronomical Society: Letters 467 (1): L110–L114. doi:10.1093/mnrasl/slx008. Bibcode2017MNRAS.467L.110S. 
  • Mustafa, Mustafa; Bard, Deborah; Bhimji, Wahid; Lukić, Zarija; Al-Rfou, Rami; Kratochvil, Jan M. (2019-05-06). «CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks». Computational Astrophysics and Cosmology 6 (1): 1. doi:10.1186/s40668-019-0029-9. ISSN 2197-7909. Bibcode2019ComAC...6....1M. 
  • Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2017). «Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis». Computing and Software for Big Science 1: 4. doi:10.1007/s41781-017-0004-6. 
  • Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters». Phys. Rev. Letters 120 (4): 042003. doi:10.1103/PhysRevLett.120.042003. PMID 29437460. 
  • Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks». Phys. Rev. D 97: 014021. doi:10.1103/PhysRevD.97.014021. 
  • Erdmann, Martin; Glombitza, Jonas; Quast, Thorben (2019). «Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network». Computing and Software for Big Science 3: 4. doi:10.1007/s41781-018-0019-7. 
  • Musella, Pasquale; Pandolfi, Francesco (2018). «Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks». Computing and Software for Big Science 2: 8. doi:10.1007/s41781-018-0015-y. Bibcode2018arXiv180500850M. 
  • Zhavoronkov, Alex (2019). «Deep learning enables rapid identification of potent DDR1 kinase inhibitors». Nature Biotechnology 37 (9): 1038–1040. doi:10.1038/s41587-019-0224-x. PMID 31477924. 

forbes.com

github.com

harvard.edu

adsabs.harvard.edu

mit.edu

3dgan.csail.mit.edu

nih.gov

ncbi.nlm.nih.gov

  • Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters». Phys. Rev. Letters 120 (4): 042003. doi:10.1103/PhysRevLett.120.042003. PMID 29437460. 
  • Zhavoronkov, Alex (2019). «Deep learning enables rapid identification of potent DDR1 kinase inhibitors». Nature Biotechnology 37 (9): 1038–1040. doi:10.1038/s41587-019-0224-x. PMID 31477924. 

nips.cc

papers.nips.cc

openai.com

phillipi.github.io

phys.org

rdmag.com

sciencedaily.com

scientificamerican.com

slashdot.org

tech.slashdot.org

technologyreview.com

theregister.co.uk

towardsdatascience.com

wired.com

worldcat.org

  • Mustafa, Mustafa; Bard, Deborah; Bhimji, Wahid; Lukić, Zarija; Al-Rfou, Rami; Kratochvil, Jan M. (2019-05-06). «CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks». Computational Astrophysics and Cosmology 6 (1): 1. doi:10.1186/s40668-019-0029-9. ISSN 2197-7909. Bibcode2019ComAC...6....1M. 

youtube.com

  • LeCun, Yann. «RL Seminar: The Next Frontier in AI: Unsupervised Learning».