Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan (2017-02-01). «Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit». Monthly Notices of the Royal Astronomical Society: Letters467 (1): L110–L114. doi:10.1093/mnrasl/slx008. Bibcode: 2017MNRAS.467L.110S.
Mustafa, Mustafa; Bard, Deborah; Bhimji, Wahid; Lukić, Zarija; Al-Rfou, Rami; Kratochvil, Jan M. (2019-05-06). «CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks». Computational Astrophysics and Cosmology6 (1): 1. doi:10.1186/s40668-019-0029-9. ISSN2197-7909. Bibcode: 2019ComAC...6....1M.
Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2017). «Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis». Computing and Software for Big Science1: 4. doi:10.1007/s41781-017-0004-6.
Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters». Phys. Rev. Letters120 (4): 042003. doi:10.1103/PhysRevLett.120.042003. PMID29437460.
Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks». Phys. Rev. D97: 014021. doi:10.1103/PhysRevD.97.014021.
Erdmann, Martin; Glombitza, Jonas; Quast, Thorben (2019). «Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network». Computing and Software for Big Science3: 4. doi:10.1007/s41781-018-0019-7.
Musella, Pasquale; Pandolfi, Francesco (2018). «Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks». Computing and Software for Big Science2: 8. doi:10.1007/s41781-018-0015-y. Bibcode: 2018arXiv180500850M.
Zhavoronkov, Alex (2019). «Deep learning enables rapid identification of potent DDR1 kinase inhibitors». Nature Biotechnology37 (9): 1038–1040. doi:10.1038/s41587-019-0224-x. PMID31477924.
Luc, Pauline; Couprie, Camille; Chintala, Soumith; Verbeek, Jakob (2016-11-25). «Semantic Segmentation using Adversarial Networks». NIPS Workshop on Adversarial Training, Dec, Barcelona, Spain2016. Bibcode: 2016arXiv161108408L.
Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan (2017-02-01). «Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit». Monthly Notices of the Royal Astronomical Society: Letters467 (1): L110–L114. doi:10.1093/mnrasl/slx008. Bibcode: 2017MNRAS.467L.110S.
Mustafa, Mustafa; Bard, Deborah; Bhimji, Wahid; Lukić, Zarija; Al-Rfou, Rami; Kratochvil, Jan M. (2019-05-06). «CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks». Computational Astrophysics and Cosmology6 (1): 1. doi:10.1186/s40668-019-0029-9. ISSN2197-7909. Bibcode: 2019ComAC...6....1M.
Musella, Pasquale; Pandolfi, Francesco (2018). «Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks». Computing and Software for Big Science2: 8. doi:10.1007/s41781-018-0015-y. Bibcode: 2018arXiv180500850M.
Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin (2018). «Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters». Phys. Rev. Letters120 (4): 042003. doi:10.1103/PhysRevLett.120.042003. PMID29437460.
Zhavoronkov, Alex (2019). «Deep learning enables rapid identification of potent DDR1 kinase inhibitors». Nature Biotechnology37 (9): 1038–1040. doi:10.1038/s41587-019-0224-x. PMID31477924.