Attention (machine learning) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Attention (machine learning)" in English language version.

refsWebsite
Global rank English rank
69th place
59th place
2nd place
2nd place
11th place
8th place
low place
low place
9th place
13th place
4th place
4th place
18th place
17th place
652nd place
515th place
5th place
5th place
102nd place
76th place
179th place
183rd place
149th place
178th place
274th place
309th place
low place
low place
low place
low place
383rd place
320th place

arxiv.org (Global: 69th place; English: 59th place)

  • Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua (2014). "Neural Machine Translation by Jointly Learning to Align and Translate". arXiv:1409.0473 [cs.CL].
  • Xu, Kelvin; Ba, Jimmy; Kiros, Ryan (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. arXiv:1502.03044.
  • Cheng, Jianpeng (2016). "Long Short-Term Memory-Networks for Machine Reading". arXiv:1601.06733 [cs.CL].
  • Paulus, Romain (2017). "A Deep Reinforced Model for Abstractive Summarization". arXiv:1705.04304 [cs.CL].
  • Parikh, Anees (2016). Decomposable Attention Model for Natural Language Inference. EMNLP. arXiv:1606.01933.
  • Lin, Zichao (2017). A Structured Self-Attentive Sentence Embedding. ICLR. arXiv:1703.03130.
  • Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Lukasz; Polosukhin, Illia (2017). "Attention is All You Need". arXiv:1706.03762 [cs.CL].
  • Santoro, Adam (2017). Relation Networks for Relational Reasoning. ICLR. arXiv:1706.01427.
  • Lee, Juho (2019). Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. ICML. arXiv:1810.00825.
  • Kitaev, Nikita (2020). Reformer: The Efficient Transformer. ICLR. arXiv:2001.04451.
  • Wang, Salah (2020). Linformer: Self-Attention with Linear Complexity. ICLR. arXiv:2006.04768.
  • Choromanski, Krzysztof (2020). Rethinking Attention with Performers. ICLR. arXiv:2009.14794.
  • Ramsauer, Johannes (2021). Hopfield Networks is All You Need. NeurIPS. arXiv:2008.02217.
  • Dosovitskiy, Aleksander (2021). An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. ICLR. arXiv:2010.11929.
  • Huang, Xiangyu (2019). CCNet: Criss-Cross Attention for Semantic Segmentation. ICCV. arXiv:1811.11721.
  • Fu, Jing (2019). Dual Attention Network for Scene Segmentation. CVPR. arXiv:1809.02983.
  • Soydaner, Derya (August 2022). "Attention mechanism in neural networks: where it comes and where it goes". Neural Computing and Applications. 34 (16): 13371–13385. arXiv:2204.13154. doi:10.1007/s00521-022-07366-3. ISSN 0941-0643.
  • Britz, Denny; Goldie, Anna; Luong, Minh-Thanh; Le, Quoc (2017-03-21). "Massive Exploration of Neural Machine Translation Architectures". arXiv:1703.03906 [cs.CV].
  • Luong, Minh-Thang (2015-09-20). "Effective Approaches to Attention-Based Neural Machine Translation". arXiv:1508.04025v5 [cs.CL].
  • Zhu, Xizhou; Cheng, Dazhi; Zhang, Zheng; Lin, Stephen; Dai, Jifeng (2019). "An Empirical Study of Spatial Attention Mechanisms in Deep Networks". 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6687–6696. arXiv:1904.05873. doi:10.1109/ICCV.2019.00679. ISBN 978-1-7281-4803-8. S2CID 118673006.
  • Hu, Jie; Shen, Li; Sun, Gang (2018). "Squeeze-and-Excitation Networks". 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. arXiv:1709.01507. doi:10.1109/CVPR.2018.00745. ISBN 978-1-5386-6420-9. S2CID 206597034.
  • Woo, Sanghyun; Park, Jongchan; Lee, Joon-Young; Kweon, In So (2018-07-18). "CBAM: Convolutional Block Attention Module". arXiv:1807.06521 [cs.CV].
  • Georgescu, Mariana-Iuliana; Ionescu, Radu Tudor; Miron, Andreea-Iuliana; Savencu, Olivian; Ristea, Nicolae-Catalin; Verga, Nicolae; Khan, Fahad Shahbaz (2022-10-12). "Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes for Medical Image Super-Resolution". arXiv:2204.04218 [eess.IV].
  • Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg (2021-06-03), An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv:2010.11929
  • Abnar, Samira; Zuidema, Willem (2020-05-31), Quantifying Attention Flow in Transformers, arXiv:2005.00928
  • Brocki, Lennart; Binda, Jakub; Chung, Neo Christopher (2024-10-25), Class-Discriminative Attention Maps for Vision Transformers, arXiv:2312.02364
  • Mullenbach, James; Wiegreffe, Sarah; Duke, Jon; Sun, Jimeng; Eisenstein, Jacob (2018-04-16), Explainable Prediction of Medical Codes from Clinical Text, arXiv:1802.05695
  • Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua (2016-05-19), Neural Machine Translation by Jointly Learning to Align and Translate, arXiv:1409.0473
  • Serrano, Sofia; Smith, Noah A. (2019-06-09), Is Attention Interpretable?, arXiv:1906.03731
  • Lee, Juho; Lee, Yoonho; Kim, Jungtaek; Kosiorek, Adam R; Choi, Seungjin; Teh, Yee Whye (2018). "Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks". arXiv:1810.00825 [cs.LG].

catalyzex.com (Global: low place; English: low place)

doi.org (Global: 2nd place; English: 2nd place)

  • Cherry, E. Colin (1953). "Some Experiments on the Recognition of Speech, with One and with Two Ears". The Journal of the Acoustical Society of America. 25 (5): 975–979. Bibcode:1953ASAJ...25..975C. doi:10.1121/1.1907229. hdl:11858/00-001M-0000-002A-F750-3.
  • Schmidhuber, Jürgen (1992). "Learning to control fast-weight memories: an alternative to recurrent nets". Neural Computation. 4 (1): 131–139. doi:10.1162/neco.1992.4.1.131. S2CID 16683347.
  • Feldman, Jerome A. (1982). "Dynamic connections in neural networks". Biological Cybernetics. 46 (1): 27–39. doi:10.1007/BF00335349. PMID 6307398.
  • Hinton, Geoffrey E. (1989). "Connectionist learning procedures". Artificial Intelligence. 40 (1–3): 185–234. doi:10.1016/0004-3702(89)90049-0.
  • Vinyals, Oriol; Toshev, Alexander; Bengio, Samy; Erhan, Dumitru (2015). "Show and Tell: A Neural Image Caption Generator". 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3156–3164. doi:10.1109/CVPR.2015.7298935. ISBN 978-1-4673-6964-0.
  • Jumper, John (2021). "Highly accurate protein structure prediction with AlphaFold". Nature. 596 (7873): 583–589. Bibcode:2021Natur.596..583J. doi:10.1038/s41586-021-03819-2. PMC 8371605. PMID 34265844.
  • Niu, Zhaoyang; Zhong, Guoqiang; Yu, Hui (2021-09-10). "A review on the attention mechanism of deep learning". Neurocomputing. 452: 48–62. doi:10.1016/j.neucom.2021.03.091. ISSN 0925-2312.
  • Soydaner, Derya (August 2022). "Attention mechanism in neural networks: where it comes and where it goes". Neural Computing and Applications. 34 (16): 13371–13385. arXiv:2204.13154. doi:10.1007/s00521-022-07366-3. ISSN 0941-0643.
  • Zhu, Xizhou; Cheng, Dazhi; Zhang, Zheng; Lin, Stephen; Dai, Jifeng (2019). "An Empirical Study of Spatial Attention Mechanisms in Deep Networks". 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6687–6696. arXiv:1904.05873. doi:10.1109/ICCV.2019.00679. ISBN 978-1-7281-4803-8. S2CID 118673006.
  • Hu, Jie; Shen, Li; Sun, Gang (2018). "Squeeze-and-Excitation Networks". 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. arXiv:1709.01507. doi:10.1109/CVPR.2018.00745. ISBN 978-1-5386-6420-9. S2CID 206597034.

github.com (Global: 383rd place; English: 320th place)

handle.net (Global: 102nd place; English: 76th place)

hdl.handle.net

  • Cherry, E. Colin (1953). "Some Experiments on the Recognition of Speech, with One and with Two Ears". The Journal of the Acoustical Society of America. 25 (5): 975–979. Bibcode:1953ASAJ...25..975C. doi:10.1121/1.1907229. hdl:11858/00-001M-0000-002A-F750-3.

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

  • Cherry, E. Colin (1953). "Some Experiments on the Recognition of Speech, with One and with Two Ears". The Journal of the Acoustical Society of America. 25 (5): 975–979. Bibcode:1953ASAJ...25..975C. doi:10.1121/1.1907229. hdl:11858/00-001M-0000-002A-F750-3.
  • Jumper, John (2021). "Highly accurate protein structure prediction with AlphaFold". Nature. 596 (7873): 583–589. Bibcode:2021Natur.596..583J. doi:10.1038/s41586-021-03819-2. PMC 8371605. PMID 34265844.

ieee.org (Global: 652nd place; English: 515th place)

ieeexplore.ieee.org

nih.gov (Global: 4th place; English: 4th place)

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

pytorch.org (Global: low place; English: low place)

sciencedirect.com (Global: 149th place; English: 178th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

springer.com (Global: 274th place; English: 309th place)

link.springer.com

stanford.edu (Global: 179th place; English: 183rd place)

unite.ai (Global: low place; English: low place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

youtube.com (Global: 9th place; English: 13th place)