Euler–Maclaurin formula (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Euler–Maclaurin formula" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
26th place
20th place
5th place
5th place
355th place
454th place
69th place
59th place
451st place
277th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Pengelley, David J. (2007). "Dances between continuous and discrete: Euler's summation formula". Euler at 300. MAA Spectrum. Washington, DC: Mathematical Association of America. pp. 169–189. arXiv:1912.03527. MR 2349549.

arxiv.org (Global: 69th place; English: 59th place)

  • Pengelley, David J. (2007). "Dances between continuous and discrete: Euler's summation formula". Euler at 300. MAA Spectrum. Washington, DC: Mathematical Association of America. pp. 169–189. arXiv:1912.03527. MR 2349549.

doi.org (Global: 2nd place; English: 2nd place)

  • Apostol, T. M. (1 May 1999). "An Elementary View of Euler's Summation Formula". The American Mathematical Monthly. 106 (5). Mathematical Association of America: 409–418. doi:10.2307/2589145. ISSN 0002-9890. JSTOR 2589145.
  • Lehmer, D. H. (1940). "On the maxima and minima of Bernoulli polynomials". The American Mathematical Monthly. 47 (8): 533–538. doi:10.2307/2303833. JSTOR 2303833.

jstor.org (Global: 26th place; English: 20th place)

  • Apostol, T. M. (1 May 1999). "An Elementary View of Euler's Summation Formula". The American Mathematical Monthly. 106 (5). Mathematical Association of America: 409–418. doi:10.2307/2589145. ISSN 0002-9890. JSTOR 2589145.
  • Lehmer, D. H. (1940). "On the maxima and minima of Bernoulli polynomials". The American Mathematical Monthly. 47 (8): 533–538. doi:10.2307/2303833. JSTOR 2303833.

nist.gov (Global: 355th place; English: 454th place)

dlmf.nist.gov

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

  • Apostol, T. M. (1 May 1999). "An Elementary View of Euler's Summation Formula". The American Mathematical Monthly. 106 (5). Mathematical Association of America: 409–418. doi:10.2307/2589145. ISSN 0002-9890. JSTOR 2589145.