Gamma function (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Gamma function" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
742nd place
538th place
1st place
1st place
11th place
8th place
513th place
537th place
3rd place
3rd place
18th place
17th place
26th place
20th place
low place
low place
69th place
59th place
3,479th place
2,444th place
6th place
6th place
low place
low place
355th place
454th place
451st place
277th place
6,910th place
low place
1,983rd place
1,330th place
8,173rd place
9,012th place
2,798th place
4,271st place
5th place
5th place
120th place
125th place
low place
low place
9,154th place
6,345th place
2,242nd place
1,513th place
low place
low place
2,204th place
1,735th place
383rd place
320th place
5,726th place
4,463rd place

aip.org

scitation.aip.org

ams.org

mathscinet.ams.org

archive.org

ia800108.us.archive.org

arxiv.org

att.net

home.att.net

books.google.com

ccas.ru

dartmouth.edu

math.dartmouth.edu

doi.org

  • Davis, P. J. (1959). "Leonhard Euler's Integral: A Historical Profile of the Gamma Function". American Mathematical Monthly. 66 (10): 849–869. doi:10.2307/2309786. JSTOR 2309786. Archived from the original on 7 November 2012. Retrieved 3 December 2016.
  • Kingman, J. F. C. (1961). "A Convexity Property of Positive Matrices". The Quarterly Journal of Mathematics. 12 (1): 283–284. Bibcode:1961QJMat..12..283K. doi:10.1093/qmath/12.1.283.
  • Waldschmidt, M. (2006). "Transcendence of Periods: The State of the Art" (PDF). Pure Appl. Math. Quart. 2 (2): 435–463. doi:10.4310/pamq.2006.v2.n2.a3. Archived (PDF) from the original on 6 May 2006.
  • Blagouchine, Iaroslav V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". Ramanujan J. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474.
  • Blagouchine, Iaroslav V. (2016). "Erratum and Addendum to "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results"". Ramanujan J. 42 (3): 777–781. doi:10.1007/s11139-015-9763-z. S2CID 125198685.
  • Blagouchine, Iaroslav V. (2015). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
  • Adamchik, Victor S. (1998). "Polygamma functions of negative order". J. Comput. Appl. Math. 100 (2): 191–199. doi:10.1016/S0377-0427(98)00192-7.
  • Espinosa, Olivier; Moll, Victor H. (2002). "On Some Integrals Involving the Hurwitz Zeta Function: Part 1". The Ramanujan Journal. 6 (2): 159–188. doi:10.1023/A:1015706300169. S2CID 128246166.
  • Bailey, David H.; Borwein, David; Borwein, Jonathan M. (2015). "On Eulerian log-gamma integrals and Tornheim-Witten zeta functions". The Ramanujan Journal. 36 (1–2): 43–68. doi:10.1007/s11139-012-9427-1. S2CID 7335291.
  • Amdeberhan, T.; Coffey, Mark W.; Espinosa, Olivier; Koutschan, Christoph; Manna, Dante V.; Moll, Victor H. (2011). "Integrals of powers of loggamma". Proc. Amer. Math. Soc. 139 (2): 535–545. doi:10.1090/S0002-9939-2010-10589-0.
  • Borwein, J. M.; Zucker, I. J. (1992). "Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind". IMA Journal of Numerical Analysis. 12 (4): 519–526. doi:10.1093/IMANUM/12.4.519.
  • Werner, Helmut; Collinge, Robert (1961). "Chebyshev approximations to the Gamma Function". Math. Comput. 15 (74): 195–197. doi:10.1090/S0025-5718-61-99220-1. JSTOR 2004230.
  • Lanczos, C. (1964). "A precision approximation of the gamma function". Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis. 1 (1): 86. Bibcode:1964SJNA....1...86L. doi:10.1137/0701008.
  • Borwein, Jonathan M.; Corless, Robert M. (2017). "Gamma and Factorial in the Monthly". American Mathematical Monthly. 125 (5). Mathematical Association of America: 400–24. arXiv:1703.05349. Bibcode:2017arXiv170305349B. doi:10.1080/00029890.2018.1420983. S2CID 119324101.

github.com

gnome.org

gitlab.gnome.org

harvard.edu

ui.adsabs.harvard.edu

infn.it

roma1.infn.it

jstor.org

  • Davis, P. J. (1959). "Leonhard Euler's Integral: A Historical Profile of the Gamma Function". American Mathematical Monthly. 66 (10): 849–869. doi:10.2307/2309786. JSTOR 2309786. Archived from the original on 7 November 2012. Retrieved 3 December 2016.
  • Werner, Helmut; Collinge, Robert (1961). "Chebyshev approximations to the Gamma Function". Math. Comput. 15 (74): 195–197. doi:10.1090/S0025-5718-61-99220-1. JSTOR 2004230.

jussieu.fr

math.jussieu.fr

luschny.de

maa.org

mathdl.maa.org

  • Davis, P. J. (1959). "Leonhard Euler's Integral: A Historical Profile of the Gamma Function". American Mathematical Monthly. 66 (10): 849–869. doi:10.2307/2309786. JSTOR 2309786. Archived from the original on 7 November 2012. Retrieved 3 December 2016.

maa.org

nist.gov

dlmf.nist.gov

ntu.edu.tw

csie.ntu.edu.tw

oeis.org

researchgate.net

semanticscholar.org

api.semanticscholar.org

stackexchange.com

math.stackexchange.com

uni-graz.at

imsc.uni-graz.at

web.archive.org

  • Davis, P. J. (1959). "Leonhard Euler's Integral: A Historical Profile of the Gamma Function". American Mathematical Monthly. 66 (10): 849–869. doi:10.2307/2309786. JSTOR 2309786. Archived from the original on 7 November 2012. Retrieved 3 December 2016.
  • Waldschmidt, M. (2006). "Transcendence of Periods: The State of the Art" (PDF). Pure Appl. Math. Quart. 2 (2): 435–463. doi:10.4310/pamq.2006.v2.n2.a3. Archived (PDF) from the original on 6 May 2006.
  • Pascal Sebah, Xavier Gourdon. "Introduction to the Gamma Function" (PDF). Numbers Computation. Archived from the original (PDF) on 30 January 2023. Retrieved 30 January 2023.
  • "Leonhard Euler's Integral: An Historical Profile of the Gamma Function" (PDF). Archived (PDF) from the original on 12 September 2014. Retrieved 11 April 2022.
  • Michon, G. P. "Trigonometry and Basic Functions Archived 9 January 2010 at the Wayback Machine". Numericana. Retrieved 5 May 2007.

wolfram.com

mathworld.wolfram.com

functions.wolfram.com

worldcat.org

search.worldcat.org

  • Bateman, Harry; Erdélyi, Arthur (1955). Higher Transcendental Functions. McGraw-Hill. OCLC 627135.

yearis.com