Analysis of information sources in references of the Wikipedia article "Isotopes of thorium" in English language version.
The transition frequency between the I = 5/2 ground state and the I = 3/2 excited state is determined as: 𝜈Th = 1/6 (𝜈a + 2𝜈b + 2𝜈c + 𝜈d) = 2020407384335(2) kHz.
A half-life of 7±1 μs has been measured
a narrow, laser-linewidth-limited spectral feature at 148.38219(4)stat(20)sys nm (2020407.3(5)stat(30)sys GHz) that decays with a lifetime of 568(13)stat(20)sys s. This feature is assigned to the excitation of the 229Th nuclear isomeric state, whose energy is found to be 8.355733(2)stat(10)sys eV in 229Th:LiSrAlF6.
The nuclear resonance for the Th4+ ions in Th:CaF2 is measured at the wavelength 148.3821(5) nm, frequency 2020.409(7) THz, and the fluorescence lifetime in the crystal is 630(15) s, corresponding to an isomer half-life of 1740(50) s for a nucleus isolated in vacuum.
The transition frequency between the I = 5/2 ground state and the I = 3/2 excited state is determined as: 𝜈Th = 1/6 (𝜈a + 2𝜈b + 2𝜈c + 𝜈d) = 2020407384335(2) kHz.
A half-life of 7±1 μs has been measured
While we do not exclude that the decay of the 229mTh isomer has contributed to the photon emission observed in [1], we conclude that the sought-after signal would be heavily masked by background from other nuclear decays and radioluminescence induced in the MgF2 plates.
The nuclear resonance for the Th4+ ions in Th:CaF2 is measured at the wavelength 148.3821(5) nm, frequency 2020.409(7) THz, and the fluorescence lifetime in the crystal is 630(15) s, corresponding to an isomer half-life of 1740(50) s for a nucleus isolated in vacuum.
A half-life of 7±1 μs has been measured
While we do not exclude that the decay of the 229mTh isomer has contributed to the photon emission observed in [1], we conclude that the sought-after signal would be heavily masked by background from other nuclear decays and radioluminescence induced in the MgF2 plates.
A half-life of 7±1 μs has been measured
While we do not exclude that the decay of the 229mTh isomer has contributed to the photon emission observed in [1], we conclude that the sought-after signal would be heavily masked by background from other nuclear decays and radioluminescence induced in the MgF2 plates.
A half-life of 7±1 μs has been measured
The nuclear resonance for the Th4+ ions in Th:CaF2 is measured at the wavelength 148.3821(5) nm, frequency 2020.409(7) THz, and the fluorescence lifetime in the crystal is 630(15) s, corresponding to an isomer half-life of 1740(50) s for a nucleus isolated in vacuum.