Lemniscate constant (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Lemniscate constant" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
742nd place
538th place
2,467th place
2,049th place
11th place
8th place
2,594th place
2,546th place
low place
low place
3rd place
3rd place
low place
low place
low place
low place
451st place
277th place
355th place
454th place
low place
low place
230th place
214th place
1,266th place
860th place
120th place
125th place

ams.org

mathscinet.ams.org

ams.org

  • Adlaj, Semjon (2012). "An Eloquent Formula for the Perimeter of an Ellipse" (PDF). American Mathematical Society. p. 1097. One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is . In this paper and .

books.google.com

deepdyve.com

  • In particular, Schneider proved that the beta function is transcendental for all such that . The fact that is transcendental follows from and similarly for B and G from
    Schneider, Theodor (1941). "Zur Theorie der Abelschen Funktionen und Integrale". Journal für die reine und angewandte Mathematik. 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331.

doi.org

eudml.org

  • In particular, Siegel proved that if and with are algebraic, then or is transcendental. Here, and are Eisenstein series. The fact that is transcendental follows from and
    Apostol, T. M. (1990). Modular Functions and Dirichlet Series in Number Theory (Second ed.). Springer. p. 12. ISBN 0-387-97127-0.
    Siegel, C. L. (1932). "Über die Perioden elliptischer Funktionen". Journal für die reine und angewandte Mathematik (in German). 167: 62–69.
  • Rubin, Karl (1987). "Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication". Inventiones Mathematicae. 89: 528.

lmfdb.org

nist.gov

dlmf.nist.gov

numberworld.org

oeis.org

researchgate.net

semanticscholar.org

api.semanticscholar.org

uchicago.edu

math.uchicago.edu

umn.edu

www-users.math.umn.edu

uni-goettingen.de

gdz.sub.uni-goettingen.de

  • See:
    • Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen.
    • See:
      • Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen.

uu.nl

webspace.science.uu.nl