Pascal's triangle (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Pascal's triangle" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
26th place
20th place
3rd place
3rd place
451st place
277th place
149th place
178th place
18th place
17th place
11th place
8th place
low place
low place
6,086th place
4,310th place
6th place
6th place
124th place
544th place
6,479th place
4,121st place
383rd place
320th place
70th place
63rd place
8,780th place
5,894th place
120th place
125th place
low place
low place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Coolidge, J. L. (1949), "The story of the binomial theorem", The American Mathematical Monthly, 56 (3): 147–157, doi:10.2307/2305028, JSTOR 2305028, MR 0028222.
  • Fine, N. J. (1947), "Binomial coefficients modulo a prime", American Mathematical Monthly, 54 (10): 589–592, doi:10.2307/2304500, JSTOR 2304500, MR 0023257. See in particular Theorem 2, which gives a generalization of this fact for all prime moduli.
  • Hinz, Andreas M. (1992), "Pascal's triangle and the Tower of Hanoi", The American Mathematical Monthly, 99 (6): 538–544, doi:10.2307/2324061, JSTOR 2324061, MR 1166003. Hinz attributes this observation to an 1891 book by Édouard Lucas, Théorie des nombres (p. 420).

archive.org (Global: 6th place; English: 6th place)

  • Alsdorf, Ludwig (1991) [1933]. "The Pratyayas: Indian Contribution to Combinatorics" (PDF). Indian Journal of History of Science. 26 (1): 17–61. Translated by S. R. Sarma from "π Die Pratyayas. Ein Beitrag zur indischen Mathematik". Zeitschrift für Indologie und Iranistik. 9: 97–157. 1933.
    Bag, Amulya Kumar (1966). "Binomial theorem in ancient India" (PDF). Indian Journal of History of Science. 1 (1): 68–74.
    Tertiary sources:
    Sen, Samarendra Nath (1971). "Mathematics". In Bose, D. M. (ed.). A Concise History Of Science In India. Indian National Science Academy. Ch. 3, pp. 136–212, esp. "Permutations, Combinations and Pascal Triangle", pp. 156–157.
    Fowler, David H. (1996). "The Binomial Coefficient Function". The American Mathematical Monthly. 103 (1): 1–17, esp. §4 "A Historical Note", pp. 10–17. doi:10.2307/2975209. JSTOR 2975209.

bnf.fr (Global: 124th place; English: 544th place)

gallica.bnf.fr

books.google.com (Global: 3rd place; English: 3rd place)

centre-mersenne.org (Global: low place; English: low place)

ambp.centre-mersenne.org

doi.org (Global: 2nd place; English: 2nd place)

github.com (Global: 383rd place; English: 320th place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

ias.ac.in (Global: 6,086th place; English: 4,310th place)

repository.ias.ac.in

  • Alsdorf, Ludwig (1991) [1933]. "The Pratyayas: Indian Contribution to Combinatorics" (PDF). Indian Journal of History of Science. 26 (1): 17–61. Translated by S. R. Sarma from "π Die Pratyayas. Ein Beitrag zur indischen Mathematik". Zeitschrift für Indologie und Iranistik. 9: 97–157. 1933.
    Bag, Amulya Kumar (1966). "Binomial theorem in ancient India" (PDF). Indian Journal of History of Science. 1 (1): 68–74.
    Tertiary sources:
    Sen, Samarendra Nath (1971). "Mathematics". In Bose, D. M. (ed.). A Concise History Of Science In India. Indian National Science Academy. Ch. 3, pp. 136–212, esp. "Permutations, Combinations and Pascal Triangle", pp. 156–157.
    Fowler, David H. (1996). "The Binomial Coefficient Function". The American Mathematical Monthly. 103 (1): 1–17, esp. §4 "A Historical Note", pp. 10–17. doi:10.2307/2975209. JSTOR 2975209.

insa.nic.in (Global: low place; English: low place)

  • Alsdorf, Ludwig (1991) [1933]. "The Pratyayas: Indian Contribution to Combinatorics" (PDF). Indian Journal of History of Science. 26 (1): 17–61. Translated by S. R. Sarma from "π Die Pratyayas. Ein Beitrag zur indischen Mathematik". Zeitschrift für Indologie und Iranistik. 9: 97–157. 1933.
    Bag, Amulya Kumar (1966). "Binomial theorem in ancient India" (PDF). Indian Journal of History of Science. 1 (1): 68–74.
    Tertiary sources:
    Sen, Samarendra Nath (1971). "Mathematics". In Bose, D. M. (ed.). A Concise History Of Science In India. Indian National Science Academy. Ch. 3, pp. 136–212, esp. "Permutations, Combinations and Pascal Triangle", pp. 156–157.
    Fowler, David H. (1996). "The Binomial Coefficient Function". The American Mathematical Monthly. 103 (1): 1–17, esp. §4 "A Historical Note", pp. 10–17. doi:10.2307/2975209. JSTOR 2975209.

jstor.org (Global: 26th place; English: 20th place)

  • Coolidge, J. L. (1949), "The story of the binomial theorem", The American Mathematical Monthly, 56 (3): 147–157, doi:10.2307/2305028, JSTOR 2305028, MR 0028222.
  • Alsdorf, Ludwig (1991) [1933]. "The Pratyayas: Indian Contribution to Combinatorics" (PDF). Indian Journal of History of Science. 26 (1): 17–61. Translated by S. R. Sarma from "π Die Pratyayas. Ein Beitrag zur indischen Mathematik". Zeitschrift für Indologie und Iranistik. 9: 97–157. 1933.
    Bag, Amulya Kumar (1966). "Binomial theorem in ancient India" (PDF). Indian Journal of History of Science. 1 (1): 68–74.
    Tertiary sources:
    Sen, Samarendra Nath (1971). "Mathematics". In Bose, D. M. (ed.). A Concise History Of Science In India. Indian National Science Academy. Ch. 3, pp. 136–212, esp. "Permutations, Combinations and Pascal Triangle", pp. 156–157.
    Fowler, David H. (1996). "The Binomial Coefficient Function". The American Mathematical Monthly. 103 (1): 1–17, esp. §4 "A Historical Note", pp. 10–17. doi:10.2307/2975209. JSTOR 2975209.
  • Kennedy, E. (1966). Omar Khayyam. The Mathematics Teacher 1958. National Council of Teachers of Mathematics. pp. 140–142. JSTOR i27957284.
  • Fowler, David (January 1996). "The Binomial Coefficient Function". The American Mathematical Monthly. 103 (1): 1–17. doi:10.2307/2975209. JSTOR 2975209. See in particular p. 11.
  • Fine, N. J. (1947), "Binomial coefficients modulo a prime", American Mathematical Monthly, 54 (10): 589–592, doi:10.2307/2304500, JSTOR 2304500, MR 0023257. See in particular Theorem 2, which gives a generalization of this fact for all prime moduli.
  • Hinz, Andreas M. (1992), "Pascal's triangle and the Tower of Hanoi", The American Mathematical Monthly, 99 (6): 538–544, doi:10.2307/2324061, JSTOR 2324061, MR 1166003. Hinz attributes this observation to an 1891 book by Édouard Lucas, Théorie des nombres (p. 420).
  • Morton, Robert L. (1964), "Pascal's Triangle and powers of 11", The Mathematics Teacher, 57 (6): 392–394, doi:10.5951/MT.57.6.0392, JSTOR 27957091.
  • Winteridge, David J. (1984), "Pascal's Triangle and Powers of 11", Mathematics in School, 13 (1): 12–13, JSTOR 30213884.
  • Mueller, Francis J. (1965), "More on Pascal's Triangle and powers of 11", The Mathematics Teacher, 58 (5): 425–428, doi:10.5951/MT.58.5.0425, JSTOR 27957164.
  • Low, Leone (1966), "Even more on Pascal's Triangle and Powers of 11", The Mathematics Teacher, 59 (5): 461–463, doi:10.5951/MT.59.5.0461, JSTOR 27957385.

loc.gov (Global: 70th place; English: 63rd place)

  • Newton, Isaac (1736), "A Treatise of the Method of Fluxions and Infinite Series", The Mathematical Works of Isaac Newton: 1:31–33, But these in the alternate areas, which are given, I observed were the same with the figures of which the several ascending powers of the number 11 consist, viz. , , , , , etc. that is, first 1; the second 1, 1; the third 1, 2, 1; the fourth 1, 3, 3, 1; the fifth 1, 4, 6, 4, 1, and so on.

researchgate.net (Global: 120th place; English: 125th place)

sciencedirect.com (Global: 149th place; English: 178th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

udayton.edu (Global: 8,780th place; English: 5,894th place)

ecommons.udayton.edu

usu.edu (Global: 6,479th place; English: 4,121st place)

5010.mathed.usu.edu