Solar mass (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Solar mass" in English language version.

refsWebsite
Global rank English rank
18th place
17th place
2nd place
2nd place
69th place
59th place
11th place
8th place
75th place
83rd place
4th place
4th place
4,653rd place
3,286th place
896th place
674th place
26th place
20th place
936th place
713th place
1st place
1st place
3,018th place
1,865th place
355th place
454th place
5th place
5th place
5,528th place
4,582nd place
low place
low place

arxiv.org (Global: 69th place; English: 59th place)

  • Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G. (2016). "Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3". The Astronomical Journal. 152 (2): 41. arXiv:1605.09788. Bibcode:2016AJ....152...41P. doi:10.3847/0004-6256/152/2/41.
  • Schröder, K.-P.; Connon Smith, Robert (2008), "Distant future of the Sun and Earth revisited", Monthly Notices of the Royal Astronomical Society, 386 (1): 155–163, arXiv:0801.4031, Bibcode:2008MNRAS.386..155S, doi:10.1111/j.1365-2966.2008.13022.x, S2CID 10073988
  • Sackmann, I.-Juliana; Boothroyd, Arnold I. (February 2003), "Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars", The Astrophysical Journal, 583 (2): 1024–1039, arXiv:astro-ph/0210128, Bibcode:2003ApJ...583.1024S, doi:10.1086/345408, S2CID 118904050

doi.org (Global: 2nd place; English: 2nd place)

  • Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G. (2016). "Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3". The Astronomical Journal. 152 (2): 41. arXiv:1605.09788. Bibcode:2016AJ....152...41P. doi:10.3847/0004-6256/152/2/41.
  • Cohen, I. Bernard (May 1998). "Newton's Determination of the Masses and Densities of the Sun, Jupiter, Saturn, and the Earth". Archive for History of Exact Sciences. 53 (1): 83–95. Bibcode:1998AHES...53...83C. doi:10.1007/s004070050022. JSTOR 41134054. S2CID 122869257.
  • Schröder, K.-P.; Connon Smith, Robert (2008), "Distant future of the Sun and Earth revisited", Monthly Notices of the Royal Astronomical Society, 386 (1): 155–163, arXiv:0801.4031, Bibcode:2008MNRAS.386..155S, doi:10.1111/j.1365-2966.2008.13022.x, S2CID 10073988
  • Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (18 January 2018). "Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission". Nature Communications. 9 (1): 289. Bibcode:2018NatCo...9..289G. doi:10.1038/s41467-017-02558-1. ISSN 2041-1723. PMC 5773540. PMID 29348613. The fusion cycle that generates energy into the Sun relies on the conversion of hydrogen into helium, which is responsible for a solar mass reduction with a rate of ~ −0.67 × 10−13 per year. On the other hand, the solar wind contribution is more uncertain. The solar cycle significantly influences the solar mass loss rate due to solar wind. Estimates of the mass carried away with the solar wind showed rates between − (2–3) × 10−14M per year, whereas numerical simulations of coupled corona and solar wind models provided rates between − (4.2–6.9) × 10−14 M per year.
  • Sackmann, I.-Juliana; Boothroyd, Arnold I. (February 2003), "Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars", The Astrophysical Journal, 583 (2): 1024–1039, arXiv:astro-ph/0210128, Bibcode:2003ApJ...583.1024S, doi:10.1086/345408, S2CID 118904050

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

  • Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G. (2016). "Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3". The Astronomical Journal. 152 (2): 41. arXiv:1605.09788. Bibcode:2016AJ....152...41P. doi:10.3847/0004-6256/152/2/41.
  • Pecker, Jean Claude; Kaufman, Susan (2001). Understanding the heavens: thirty centuries of astronomical ideas from ancient thinking to modern cosmology. Springer. p. 291. Bibcode:2001uhtc.book.....P. ISBN 978-3-540-63198-9.
  • Cohen, I. Bernard (May 1998). "Newton's Determination of the Masses and Densities of the Sun, Jupiter, Saturn, and the Earth". Archive for History of Exact Sciences. 53 (1): 83–95. Bibcode:1998AHES...53...83C. doi:10.1007/s004070050022. JSTOR 41134054. S2CID 122869257.
  • Schröder, K.-P.; Connon Smith, Robert (2008), "Distant future of the Sun and Earth revisited", Monthly Notices of the Royal Astronomical Society, 386 (1): 155–163, arXiv:0801.4031, Bibcode:2008MNRAS.386..155S, doi:10.1111/j.1365-2966.2008.13022.x, S2CID 10073988
  • Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (18 January 2018). "Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission". Nature Communications. 9 (1): 289. Bibcode:2018NatCo...9..289G. doi:10.1038/s41467-017-02558-1. ISSN 2041-1723. PMC 5773540. PMID 29348613. The fusion cycle that generates energy into the Sun relies on the conversion of hydrogen into helium, which is responsible for a solar mass reduction with a rate of ~ −0.67 × 10−13 per year. On the other hand, the solar wind contribution is more uncertain. The solar cycle significantly influences the solar mass loss rate due to solar wind. Estimates of the mass carried away with the solar wind showed rates between − (2–3) × 10−14M per year, whereas numerical simulations of coupled corona and solar wind models provided rates between − (4.2–6.9) × 10−14 M per year.
  • Sackmann, I.-Juliana; Boothroyd, Arnold I. (February 2003), "Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars", The Astrophysical Journal, 583 (2): 1024–1039, arXiv:astro-ph/0210128, Bibcode:2003ApJ...583.1024S, doi:10.1086/345408, S2CID 118904050

iau-a3.gitlab.io (Global: low place; English: low place)

jstor.org (Global: 26th place; English: 20th place)

nasa.gov (Global: 75th place; English: 83rd place)

imagine.gsfc.nasa.gov

nssdc.gsfc.nasa.gov

nih.gov (Global: 4th place; English: 4th place)

ncbi.nlm.nih.gov

  • Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (18 January 2018). "Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission". Nature Communications. 9 (1): 289. Bibcode:2018NatCo...9..289G. doi:10.1038/s41467-017-02558-1. ISSN 2041-1723. PMC 5773540. PMID 29348613. The fusion cycle that generates energy into the Sun relies on the conversion of hydrogen into helium, which is responsible for a solar mass reduction with a rate of ~ −0.67 × 10−13 per year. On the other hand, the solar wind contribution is more uncertain. The solar cycle significantly influences the solar mass loss rate due to solar wind. Estimates of the mass carried away with the solar wind showed rates between − (2–3) × 10−14M per year, whereas numerical simulations of coupled corona and solar wind models provided rates between − (4.2–6.9) × 10−14 M per year.

pubmed.ncbi.nlm.nih.gov

  • Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (18 January 2018). "Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission". Nature Communications. 9 (1): 289. Bibcode:2018NatCo...9..289G. doi:10.1038/s41467-017-02558-1. ISSN 2041-1723. PMC 5773540. PMID 29348613. The fusion cycle that generates energy into the Sun relies on the conversion of hydrogen into helium, which is responsible for a solar mass reduction with a rate of ~ −0.67 × 10−13 per year. On the other hand, the solar wind contribution is more uncertain. The solar cycle significantly influences the solar mass loss rate due to solar wind. Estimates of the mass carried away with the solar wind showed rates between − (2–3) × 10−14M per year, whereas numerical simulations of coupled corona and solar wind models provided rates between − (4.2–6.9) × 10−14 M per year.

nist.gov (Global: 355th place; English: 454th place)

physics.nist.gov

ohio-state.edu (Global: 5,528th place; English: 4,582nd place)

astronomy.ohio-state.edu

scientificamerican.com (Global: 896th place; English: 674th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

space.com (Global: 936th place; English: 713th place)

uiowa.edu (Global: 3,018th place; English: 1,865th place)

astro.physics.uiowa.edu

utk.edu (Global: 4,653rd place; English: 3,286th place)

phys.utk.edu

web.archive.org (Global: 1st place; English: 1st place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

  • Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (18 January 2018). "Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission". Nature Communications. 9 (1): 289. Bibcode:2018NatCo...9..289G. doi:10.1038/s41467-017-02558-1. ISSN 2041-1723. PMC 5773540. PMID 29348613. The fusion cycle that generates energy into the Sun relies on the conversion of hydrogen into helium, which is responsible for a solar mass reduction with a rate of ~ −0.67 × 10−13 per year. On the other hand, the solar wind contribution is more uncertain. The solar cycle significantly influences the solar mass loss rate due to solar wind. Estimates of the mass carried away with the solar wind showed rates between − (2–3) × 10−14M per year, whereas numerical simulations of coupled corona and solar wind models provided rates between − (4.2–6.9) × 10−14 M per year.