Analysis of information sources in references of the Wikipedia article "Younger Dryas impact hypothesis" in English language version.
Vance Haynes later renamed it the 'black mat'
The Board's inquiry concluded that Kevin Lee Jonker and Allen Whitt had practiced geophysics without a license.
The presence of the high number of such microspherules in the sediments can serve as a local stratigraphic marker in identification of the [lower Younger Dryas boundary] there where dark variety of the black mat is absent.
We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.
We propose that this massive hydrological reorganization resulted from a cosmic impact event at the YD boundary.
...the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.
[Measurements] firmly date the [Laacher See eruption] to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. ...thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.
We propose that this massive hydrological reorganization resulted from a cosmic impact event at the YD boundary.
...the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.
[Measurements] firmly date the [Laacher See eruption] to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. ...thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
[Deadly Voyager] is a superb book and has absolutely convinced me there were comet airbursts at the Younger Dryas.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.
...the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.
...the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
The notion was popularized in television documentaries and other coverage on the National Geographic Channel, History Channel, and the PBS program NOVA.
The first formal description of the Younger Dryas impact hypothesis came in 2007, when four researchers sat in front of a gaggle of reporters at the American Geophysical Union's spring meeting in Acapulco, Mexico.
According to Joe, as of that week he was averaging over 120 million downloads a month, putting him on a par with the biggest talk show hosts on television, either cable or broadcast.
Based on materials collected before the site was flooded, Kennett and his colleagues contend Abu Hureyra is the first site to document the direct effects of a fragmented comet on a human settlement.
That is 126 years earlier than the generally accepted dating based on sediments in the Meerfelder Maar from the Eifel region in Germany. ... This difference has far-reaching consequences for the synchronization of European climate archives and the understanding of North Atlantic and European climate history. ... This means that the [onset of the Younger Dryas] also occurred in Central Europe 130 years earlier, around 12,870 years ago respectively. This is in line with the onset of the cooling in the North Atlantic region identified in ice cores from Greenland. ... 'This strong cooling did not take place time transgressively, as previously thought, but rather synchronously over the entire North Atlantic and Central European region,' said Frederick Reinig.
Vance Haynes later renamed it the 'black mat'
That is 126 years earlier than the generally accepted dating based on sediments in the Meerfelder Maar from the Eifel region in Germany. ... This difference has far-reaching consequences for the synchronization of European climate archives and the understanding of North Atlantic and European climate history. ... This means that the [onset of the Younger Dryas] also occurred in Central Europe 130 years earlier, around 12,870 years ago respectively. This is in line with the onset of the cooling in the North Atlantic region identified in ice cores from Greenland. ... 'This strong cooling did not take place time transgressively, as previously thought, but rather synchronously over the entire North Atlantic and Central European region,' said Frederick Reinig.
The first formal description of the Younger Dryas impact hypothesis came in 2007, when four researchers sat in front of a gaggle of reporters at the American Geophysical Union's spring meeting in Acapulco, Mexico.
The Board's inquiry concluded that Kevin Lee Jonker and Allen Whitt had practiced geophysics without a license.
Based on materials collected before the site was flooded, Kennett and his colleagues contend Abu Hureyra is the first site to document the direct effects of a fragmented comet on a human settlement.
The notion was popularized in television documentaries and other coverage on the National Geographic Channel, History Channel, and the PBS program NOVA.
[Deadly Voyager] is a superb book and has absolutely convinced me there were comet airbursts at the Younger Dryas.
According to Joe, as of that week he was averaging over 120 million downloads a month, putting him on a par with the biggest talk show hosts on television, either cable or broadcast.
The presence of the high number of such microspherules in the sediments can serve as a local stratigraphic marker in identification of the [lower Younger Dryas boundary] there where dark variety of the black mat is absent.
We propose that this massive hydrological reorganization resulted from a cosmic impact event at the YD boundary.
[Measurements] firmly date the [Laacher See eruption] to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. ...thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
The presence of the high number of such microspherules in the sediments can serve as a local stratigraphic marker in identification of the [lower Younger Dryas boundary] there where dark variety of the black mat is absent.
We propose that this massive hydrological reorganization resulted from a cosmic impact event at the YD boundary.
[Measurements] firmly date the [Laacher See eruption] to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. ...thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought.
The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.