Le méthane : d'où vient-il et quel est son impact sur le climat ? (rapport), Académie des technologies, (lire en ligne [PDF]), Chapitres 1 et 6, p. 11-24, 107-120 et 170.
Dollé J.B. et Robin P., « Émissions de gaz à effet de serre en bâtiment d’élevage bovin », Fourrages, no 186, , p. 205-214 (présentation en ligne, lire en ligne [PDF]).
agu.org
Fiore, A.M., D.J. Jacob, B.D. Field, D.G. Streets, S.D. Fernandes et C. Jang (2002), Linking ozone pollution and climate change: The case for controlling methane, Geophys. Res. Lett., 29(19), 1919, DOI10.1029/2002GL015601 (Résumé).
archives-ouvertes.fr
hal.archives-ouvertes.fr
Daniel Sauvant, « La production de méthane dans la biosphère : le rôle des animaux d’élevage », Courrier de la Cellule Environnement de l'INRA, INRA, n° 18, 1992 (lire en ligne), p. 65-70.
(en) Michael J. Mumma, Geronimo L. Villanueva, Robert E. Novak, Tilak Hewagama, Boncho P. Bonev, Michael A. DiSanti, Avi M. Mandell et Michael D. Smith, « Strong Release of Methane on Mars in Northern Summer 2003 », Science, vol. 323, no 5917, , p. 1041-1045 (DOI10.1126/science.1165243, lire en ligne [PDF]).
(en) Charles Giordano, Top-down and bottom-up landfill methane emissions estimates : a comparative study of the European Union and the United States (thèse de maîtrise universitaire en sciences), Université d'Europe centrale, , vii + 109 (lire en ligne [PDF]), « Introduction », p. 1.
(en) William M. Haynes, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press/Taylor & Francis, , 91e éd., 2610 p. (ISBN9781439820773, présentation en ligne), p. 14-40
(en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press, , 83e éd., 2664 p. (ISBN0849304830, présentation en ligne), p. 5-89
(en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press/Taylor & Francis, , 89e éd., 2736 p. (ISBN9781420066791, présentation en ligne), p. 10-205
csiro.au
Bulletin ADIT pour l'Australie numéro 61 (2009 01 15) - Ambassade de France en Australie / ADIT, reprenant une information du CSIRO
« Méthane » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
dguv.de
gestis.dguv.de
Entrée « Methane » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 26 mai 2009 (JavaScript nécessaire)
(en) Iwona Owczarek et Krystyna Blazej, « Recommended Critical Temperatures. Part I. Aliphatic Hydrocarbons », J. Phys. Chem. Ref. Data, vol. 32, no 4, , p. 1411 (DOI10.1063/1.1556431)
R B Jackson, M Saunois, P Bousquet et J G Canadell, « Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources », Environmental Research Letters, vol. 15, no 7, , p. 071002 (ISSN1748-9326, DOI10.1088/1748-9326/ab9ed2, lire en ligne, consulté le )
(en) Wang, W.-C., Y.L. Yung, A.A. Lacis, T. Mo et J.E. Hansen, « Greenhouse effects due to man-made perturbation of trace gases », Science, no 194, 1976, DOI10.1126/science.194.4266.685 p. 685-690.
(en) Kietäväinen and Purkamo, « The origin, source, and cycling of methane in deep crystalline rock biosphere », Front. Microbiol., vol. 6, , p. 725 (PMID26236303, PMCID4505394, DOI10.3389/fmicb.2015.00725).
(en) Giuseppe Etiope et al., « Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars », Earth and Planetary Science Letters, vol. 310, nos 1-2, , p. 96–104 (ISSN1367-5931, DOI10.1016/j.epsl.2011.08.001).
(en) Rudolf K. Thauer, « Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes », Biochemistry, vol. 58, no 52, , p. 5198–5220 (ISSN0006-2960 et 1520-4995, DOI10.1021/acs.biochem.9b00164, lire en ligne, consulté le )
(en) Frank Keppler, John T. G. Hamilton, Marc Braß et Thomas Röckmann, « Methane emissions from terrestrial plants under aerobic conditions », Nature, vol. 439, no 7073, , p. 187–191 (ISSN0028-0836 et 1476-4687, DOI10.1038/nature04420).
(en) Andy R. McLeod, Stephen C. Fry, Gary J. Loake et David J. Messenger, « Ultraviolet radiation drives methane emissions from terrestrial plant pectins », New Phytologist, vol. 180, no 1, , p. 124–132 (ISSN0028-646X et 1469-8137, DOI10.1111/j.1469-8137.2008.02571.x).
(en) Thomas Klintzsch, Gerald Langer, Gernot Nehrke et Anna Wieland, « Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment », Biogeosciences, vol. 16, no 20, , p. 4129–4144 (ISSN1726-4189, DOI10.5194/bg-16-4129-2019).
(en) Volkmar Braun et Klaus Hantke, « Recent insights into iron import by bacteria », Current Opinion in Chemical Biology, vol. 15, no 2, , p. 328–334 (ISSN1367-5931, DOI10.1016/j.cbpa.2011.01.005)
(en) V. I. Bruskov, Zh. K. Masalimov et A. V. Chernikov, « Heat-Induced Generation of Reactive Oxygen Species in Water », Doklady Biochemistry and Biophysics, vol. 384, nos 1/6, , p. 181–184 (DOI10.1023/A:1016036617585, lire en ligne, consulté le ).
(en) Michael J. Mumma, Geronimo L. Villanueva, Robert E. Novak, Tilak Hewagama, Boncho P. Bonev, Michael A. DiSanti, Avi M. Mandell et Michael D. Smith, « Strong Release of Methane on Mars in Northern Summer 2003 », Science, vol. 323, no 5917, , p. 1041-1045 (DOI10.1126/science.1165243, lire en ligne [PDF]).
(en) Franck Lefèvre et François Forget, « Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics », Nature, vol. 40, , p. 720-723 (DOI10.1038/nature08228, résumé)
(en) Todd M. Hoefen, Roger N. Clark, Joshua L. Bandfield, Michael D. Smith, John C. Pearl et Philip R. Christensen, « Discovery of Olivine in the Nili Fossae Region of Mars », Science, vol. 203, no 5645, , p. 627-630 (DOI10.1126/science.1089647, résumé).
(en) M. Etminan, G. Myhre, E. J. Highwood et K. P. Shine, « Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing », Geophysical Research Letters, vol. 43, no 24, (ISSN0094-8276 et 1944-8007, DOI10.1002/2016GL071930, lire en ligne, consulté le )
(en) Vasilii Petrenko, Jeffrey Severinghaus et Edward Brook, « 2013-2015 ice core and firn air studies of carbon-14 and bubble closure at Summit, Greenland », Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool (jeu de données de l'étude), (DOI10.18739/A2599Z216).
Fiore, A.M., D.J. Jacob, B.D. Field, D.G. Streets, S.D. Fernandes et C. Jang (2002), Linking ozone pollution and climate change: The case for controlling methane, Geophys. Res. Lett., 29(19), 1919, DOI10.1029/2002GL015601 (Résumé).
(en) C.J. Sapart, G. Monteil, M. Prokopiou, R.S.W. Van de Wal, J.O. Kaplan, P. Sperlich, K.M. Krumhardt, C. Van der Veen, S. Houweling, M.C. Krol, T. Blunier, T. Sowers, P. Martinerie, E. Witrant, D. Dahl-Jensen et T. Röckmann, « Natural and anthropogenic variations in methane sources during the past two millennia », Nature, vol. 490, (DOI10.1038/nature11461)
(en) Kirk Thoning, Ed Dlugokencky, Xin Lan et NOAA Global Monitoring Laboratory, « Trends in globally-averaged CH4, N2O, and SF6 », (DOI10.15138/P8XG-AA10).
(en) Robert W. Howarth, « Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? », Biogeosciences, vol. 16, no 15, , p. 3033–3046 (ISSN1726-4170, DOIhttps://doi.org/10.5194/bg-16-3033-2019).
Roger I. Jones, Clare E. Carter, Andrew Kelly, Susan Ward, David J. Kelly, Jonathan Grey (2008), Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae, Ecology, vol. 89, no 3, mars 2008, p. 857-864, DOIhttps://dx.doi.org/10.1890/06-2010.1 (résumé)
Heng Rao, Luciana C. Schmidt, Julien Bonin et Marc Robert, « Visible-light-driven methane formation from CO2 with a molecular iron catalyst », Nature, vol. 548, , p. 74–77 (DOI10.1038/nature23016, résumé).
Simon J. Moore, Sven T. Sowa, Christopher Schuchardt, Evelyne Deery, Andrew D. Lawrence et al. (2017), Elucidation of the biosynthesis of the methane catalyst coenzyme F430, Nature, mis en ligne le 22 février 2017, DOI10.1038/nature21427 (résumé)
Tadhg P. Begley (2017), Biochemistry: Origin of a key player in methane biosynthesis ; mis en ligne le 22 février 2017 ; DOI10.1038/nature21507, Nature ; (résumé)
(en) Hannah M. Roberts et Alan M. Shiller, « Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy », Analytica Chimica Acta, vol. 856, , p. 68–73 (DOI10.1016/j.aca.2014.10.058, lire en ligne, consulté le )
(en) Hannah M. Roberts et Alan M. Shiller, « Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy », Analytica Chimica Acta, vol. 856, , p. 68–73 (DOI10.1016/j.aca.2014.10.058, lire en ligne, consulté le )
Bastviken, D., Ejlertsson, J., Sundh, I. et Tranvik, L. (2003), Methane as a source of carbon and energy for lake pelagic food webs, Ecology, 84(4), 969-981 (résumé).
Roger I. Jones, Clare E. Carter, Andrew Kelly, Susan Ward, David J. Kelly, Jonathan Grey (2008), Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae, Ecology, vol. 89, no 3, mars 2008, p. 857-864, DOIhttps://dx.doi.org/10.1890/06-2010.1 (résumé)
Benjamin Dessus et Bernard Laponche, « Forçage radiatif et PRG du méthane dans le rapport AR5 du GIEC », Les cahiers de Global chance, Global Chance, no 35, (lire en ligne [PDF], consulté le ).
Benjamin Dessus, Bernard Laponche et Hervé Le Treut, « Réchauffement climatique : importance du méthane », Les cahiers de Global Chance, Global Chance, no 24, , p. 3 (lire en ligne [PDF]).
R B Jackson, M Saunois, P Bousquet et J G Canadell, « Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources », Environmental Research Letters, vol. 15, no 7, , p. 071002 (ISSN1748-9326, DOI10.1088/1748-9326/ab9ed2, lire en ligne, consulté le )
(en) GIEC, chap. 8 « Anthropogenic and Natural Radiative Forcing », dans Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (lire en ligne [PDF]), p. 714, voir Cinquième rapport d'évaluation du GIEC.
P.A. Roger, J. Le Mer et C. Joulian, « L'émission et la consommation de méthane par les sols : mécanismes, bilan, contrôle. », Comptes Rendus de l'Académie d'Agriculture, volume 85, numéro 6, p. 193-210 (résumé).
issn.org
portal.issn.org
R B Jackson, M Saunois, P Bousquet et J G Canadell, « Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources », Environmental Research Letters, vol. 15, no 7, , p. 071002 (ISSN1748-9326, DOI10.1088/1748-9326/ab9ed2, lire en ligne, consulté le )
(en) Giuseppe Etiope et al., « Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars », Earth and Planetary Science Letters, vol. 310, nos 1-2, , p. 96–104 (ISSN1367-5931, DOI10.1016/j.epsl.2011.08.001).
(en) Rudolf K. Thauer, « Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes », Biochemistry, vol. 58, no 52, , p. 5198–5220 (ISSN0006-2960 et 1520-4995, DOI10.1021/acs.biochem.9b00164, lire en ligne, consulté le )
(en) Frank Keppler, John T. G. Hamilton, Marc Braß et Thomas Röckmann, « Methane emissions from terrestrial plants under aerobic conditions », Nature, vol. 439, no 7073, , p. 187–191 (ISSN0028-0836 et 1476-4687, DOI10.1038/nature04420).
(en) Andy R. McLeod, Stephen C. Fry, Gary J. Loake et David J. Messenger, « Ultraviolet radiation drives methane emissions from terrestrial plant pectins », New Phytologist, vol. 180, no 1, , p. 124–132 (ISSN0028-646X et 1469-8137, DOI10.1111/j.1469-8137.2008.02571.x).
(en) Thomas Klintzsch, Gerald Langer, Gernot Nehrke et Anna Wieland, « Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment », Biogeosciences, vol. 16, no 20, , p. 4129–4144 (ISSN1726-4189, DOI10.5194/bg-16-4129-2019).
(en) Volkmar Braun et Klaus Hantke, « Recent insights into iron import by bacteria », Current Opinion in Chemical Biology, vol. 15, no 2, , p. 328–334 (ISSN1367-5931, DOI10.1016/j.cbpa.2011.01.005)
(en) M. Etminan, G. Myhre, E. J. Highwood et K. P. Shine, « Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing », Geophysical Research Letters, vol. 43, no 24, (ISSN0094-8276 et 1944-8007, DOI10.1002/2016GL071930, lire en ligne, consulté le )
(en) Robert W. Howarth, « Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? », Biogeosciences, vol. 16, no 15, , p. 3033–3046 (ISSN1726-4170, DOIhttps://doi.org/10.5194/bg-16-3033-2019).
(en-GB) « Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted », The Guardian, (ISSN0261-3077, lire en ligne, consulté le ).
(en) Jenkins, Michael B. ; Lion, Leonard W., Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media, Applied and Environmental Microbiology, octobre 1993, 59 (10):3306-3313 (ISSN0099-2240) (résumé et lien)
(en) Franck Lefèvre et François Forget, « Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics », Nature, vol. 40, , p. 720-723 (DOI10.1038/nature08228, résumé)
Heng Rao, Luciana C. Schmidt, Julien Bonin et Marc Robert, « Visible-light-driven methane formation from CO2 with a molecular iron catalyst », Nature, vol. 548, , p. 74–77 (DOI10.1038/nature23016, résumé).
Simon J. Moore, Sven T. Sowa, Christopher Schuchardt, Evelyne Deery, Andrew D. Lawrence et al. (2017), Elucidation of the biosynthesis of the methane catalyst coenzyme F430, Nature, mis en ligne le 22 février 2017, DOI10.1038/nature21427 (résumé)
Tadhg P. Begley (2017), Biochemistry: Origin of a key player in methane biosynthesis ; mis en ligne le 22 février 2017 ; DOI10.1038/nature21507, Nature ; (résumé)
neem.dk
Présentation officielle du forage glaciaire NEEM, Groenland (2 537 mètres de forage atteints en juillet 2010)
nih.gov
ncbi.nlm.nih.gov
(en) Kietäväinen and Purkamo, « The origin, source, and cycling of methane in deep crystalline rock biosphere », Front. Microbiol., vol. 6, , p. 725 (PMID26236303, PMCID4505394, DOI10.3389/fmicb.2015.00725).
(en) Jenkins, Michael B. ; Lion, Leonard W., Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media, Applied and Environmental Microbiology, octobre 1993, 59 (10):3306-3313 (ISSN0099-2240) (résumé et lien)
Lodh, J., Mallick, A., & Roy, S. (2018). Light-driven carbon dioxide reduction coupled with conversion of acetylenic group to ketone by a functional Janus catalyst based on keplerate {Mo 132}. Journal of Materials Chemistry A, 6(42), 20844-20851. (résumé).
(en) H. Schaefer et al., « A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4 », Science, 352, 2016, p.80–84 (lire en ligne).
sciencedirect.com
Weitemeyer K.A & Buffett B.A (2006) Accumulation and release of methane from clathrates below the Laurentide and Cordilleran ice sheets. Global Planet. Change 53, 176–187 (résumé)
(en) J.L. Kirschvink et T.D. Raub, « A methane fuse for the Cambrian explosion: carbon cycles and true polar wander », Comptes Rendus Geoscience, 335(1), 2003 (lire en ligne), p. 65-78.
sciencemag.org
(en) Todd M. Hoefen, Roger N. Clark, Joshua L. Bandfield, Michael D. Smith, John C. Pearl et Philip R. Christensen, « Discovery of Olivine in the Nili Fossae Region of Mars », Science, vol. 203, no 5645, , p. 627-630 (DOI10.1126/science.1089647, résumé).
(en) V. I. Bruskov, Zh. K. Masalimov et A. V. Chernikov, « Heat-Induced Generation of Reactive Oxygen Species in Water », Doklady Biochemistry and Biophysics, vol. 384, nos 1/6, , p. 181–184 (DOI10.1023/A:1016036617585, lire en ligne, consulté le ).
sudoc.fr
Guillaume Dera, Le rôle des changements paléoclimatiques sur l'évolution de la biodiversité au Pliensbachien et au Toarcien (thèse de doctorat en géologie), Dijon, (SUDOC150641303, présentation en ligne).
techniques-ingenieur.fr
Magalie Roy-Auberger, Pierre Marion, Nicolas Boudet, Gazéification du charbon, éd. Techniques de l'Ingénieur, référence J5200, 10 décembre 2009, p. 4
(en-GB) « Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted », The Guardian, (ISSN0261-3077, lire en ligne, consulté le ).
theses.fr
Guillaume Dera, Le rôle des changements paléoclimatiques sur l'évolution de la biodiversité au Pliensbachien et au Toarcien (thèse de doctorat en géologie), Dijon, (SUDOC150641303, présentation en ligne).
(en) 40th Lunar and Planetary Science Conference – 2009, B.L. Ehlmann, J.F. Mustard et S.L. Murchie, Detection of serpentine on Mars by MRO-CRISM and possible relationship with olivine and magnesium carbonate in Nili Fossae.
(en) M. Etminan, G. Myhre, E. J. Highwood et K. P. Shine, « Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing », Geophysical Research Letters, vol. 43, no 24, (ISSN0094-8276 et 1944-8007, DOI10.1002/2016GL071930, lire en ligne, consulté le )