Analysis of information sources in references of the Wikipedia article "Teori bilangan" in Indonesian language version.
Lam, Lay Yong; Ang, Tian Se (2004). Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China (edisi ke-revised). Singapore: World Scientific. ISBN 978-981-238-696-0. Diakses tanggal 2016-02-28.[26] Sekarang ada sejumlah hal yang tidak diketahui. Kalau dihitung tiga, ada sisa 2; jika kita hitung dengan lima, ada sisa 3; Jika dihitung dengan tujuh, ada sisa 2. temukan sejumlah hal. Jawab : 2;.
Metode: Kalau kita hitung kelipatan tiga dan ada yang tersisa 2, taruh 140. Kalau kita hitung kelima dan ada sisa 3, turunkan 63. Kalau kita hitung kelipatan tujuh dan ada sisa 2, letakkan 30. Kalau kita hitung tiga dan ada yang tersisa 1, tuliskan 70. Jika kita hitung lima dan ada sisa 1, tulis 21. Bila kita hitung dengan tujuh dan ada sisa 1, turunkan 15. Jika [sebuah angka] melebihi 106, hasilnya diperoleh dengan mengurangkan 105.
[36] Sekarang ada seorang ibu hamil berusia 29 tahun. Jika masa kehamilan 9 bulan, tentukan jenis kelamin bayi yang dikandungnya.. Menjawab: Male.
Metode: Letakkan 49, tambahkan masa gestasi dan kurangi usianya. Dari sisanya ambil 1 mewakili langit, 2 bumi, 3 manusia, 4 empat musim, 5 lima fase, 6 enam pipa pitch, 7 tujuh bintang [Biduk], 8 delapan angin, dan 9 sembilan divisi [Tiongkok di bawah Yu Agung]. Jika sisanya ganjil, [jenis kelamin] adalah laki-laki dan jika sisanya genap, [jenis kelamin] adalah perempuan.
Hal ini adalah masalah terakhir dalam risalah Sunzi yang sebenarnya tidak berbelit-belit.
Lam, Lay Yong; Ang, Tian Se (2004). Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China (edisi ke-revised). Singapore: World Scientific. ISBN 978-981-238-696-0. Diakses tanggal 2016-02-28.[...] pertanyaan "bagaimana tablet dapat dihitung?" tidak harus memiliki jawaban yang sama dengan pertanyaan "masalah apa yang diatur oleh tablet? "Yang pertama dapat dijawab dengan sangat memuaskan oleh pasangan timbal balik, seperti yang disarankan pertama setengah abad yang lalu, dan yang kedua dengan semacam masalah segitiga siku-siku (Robson 2001, hlm. 202).
Robson mempermasalahkan gagasan bahwa juru tulis yang menghasilkan Plimpton 322 (yang harus "bekerja untuk mencari nafkah", dan tidak akan menjadi bagian dari "kelas menengah yang santai") bisa saja dimotivasi oleh "keingintahuan yang menganggur" sendiri karena tidak adanya "pasar untuk matematika baru".(Robson 2001, hlm. 199–200)
Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21.[...] pertanyaan "bagaimana tablet dapat dihitung?" tidak harus memiliki jawaban yang sama dengan pertanyaan "masalah apa yang diatur oleh tablet? "Yang pertama dapat dijawab dengan sangat memuaskan oleh pasangan timbal balik, seperti yang disarankan pertama setengah abad yang lalu, dan yang kedua dengan semacam masalah segitiga siku-siku (Robson 2001, hlm. 202).
Robson mempermasalahkan gagasan bahwa juru tulis yang menghasilkan Plimpton 322 (yang harus "bekerja untuk mencari nafkah", dan tidak akan menjadi bagian dari "kelas menengah yang santai") bisa saja dimotivasi oleh "keingintahuan yang menganggur" sendiri karena tidak adanya "pasar untuk matematika baru".(Robson 2001, hlm. 199–200)
Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21.[...] pertanyaan "bagaimana tablet dapat dihitung?" tidak harus memiliki jawaban yang sama dengan pertanyaan "masalah apa yang diatur oleh tablet? "Yang pertama dapat dijawab dengan sangat memuaskan oleh pasangan timbal balik, seperti yang disarankan pertama setengah abad yang lalu, dan yang kedua dengan semacam masalah segitiga siku-siku (Robson 2001, hlm. 202).
Robson mempermasalahkan gagasan bahwa juru tulis yang menghasilkan Plimpton 322 (yang harus "bekerja untuk mencari nafkah", dan tidak akan menjadi bagian dari "kelas menengah yang santai") bisa saja dimotivasi oleh "keingintahuan yang menganggur" sendiri karena tidak adanya "pasar untuk matematika baru".(Robson 2001, hlm. 199–200)
Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21. Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Diarsipkan dari versi asli (PDF) tanggal 2014-10-21.