우주의 역사 (Korean Wikipedia)

Analysis of information sources in references of the Wikipedia article "우주의 역사" in Korean language version.

refsWebsite
Global rank Korean rank
69th place
54th place
low place
low place
18th place
27th place
1st place
1st place
7th place
36th place
936th place
686th place
75th place
67th place
782nd place
648th place
20th place
66th place
54th place
92nd place
2nd place
3rd place
887th place
606th place
2,509th place
673rd place
5,591st place
2,411th place
low place
6,774th place
low place
low place
488th place
556th place
3rd place
9th place
low place
low place
1,624th place
786th place
low place
low place
low place
9,384th place
565th place
610th place
8,860th place
2,320th place
5,043rd place
7,438th place
low place
low place
1,482nd place
1,124th place
1,306th place
960th place
28th place
89th place
low place
low place
344th place
269th place
6th place
18th place
415th place
263rd place
7,948th place
9,370th place

aanda.org

archive.org

arxiv.org

  • Planck Collaboration (October 2016). "Planck 2015 results. XIII. Cosmological parameters". Astronomy & Astrophysics. 594: Article A13. arXiv:1502.01589. The Planck Collaboration in 2015 published the estimate of 13.799 ± 0.021 billion years ago (68% confidence interval). See PDF: page 32, Table 4, Age/Gyr, last column.
  • Notes: Edward L. Wright's Javascript Cosmology Calculator (last modified 23 July 2018). With a default = 69.6 (based on WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H0/Riess) parameters, the calculated age of the universe with a redshift of z = 1100 is in agreement with Olive and Peacock (about 370,000 years).
  • Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; et al. (1 September 2014). "Pair Instability Supernovae of Very Massive Population III Stars". The Astrophysical Journal. 792 (1): Article 44. arXiv:1402.5960.
  • Adams, Fred C.; Laughlin, Gregory (1 April 1997). "A dying universe: The long-term fate and evolution of astrophysical objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131.
  • Ade, Peter A.R.; et al. (BICEP2 Collaboration) (20 June 2014). "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2". Physical Review Letters. 112 (24): 241101. arXiv:1403.3985.
  • Ade, Peter A.R.; et al. (BICEP2/Keck, Planck Collaborations) (13 March 2015). "Joint Analysis of BICEP2/Keck Array and Planck Data". Physical Review Letters. 114 (10): 101301. arXiv:1502.00612.
  • D'Onofrio, Michela; Rummukainen, Kari (15 January 2016). "Standard model cross-over on the lattice". Physical Review D. 93 (2): 025003. arXiv:1508.07161.
  • Siegel, Ethan (9 September 2016). "Cosmic Neutrinos Detected, Confirming The Big Bang's Last Great Prediction" (Blog). Science. Forbes.com. Jersey City, NJ: Forbes Media, LLC. Coverage of original paper: Follin, Brent; Knox, Lloyd; Millea, Marius; et al. (26 August 2015). "First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background". Physical Review Letters. 115 (9): 091301. arXiv:1503.07863.
  • Harada, Tomohiro; Yoo, Chul-Moon; Khori, Kazunori (15 October 2013). "Threshold of primordial black hole formation". Physical Review D. 88 (8): 084051. arXiv:1309.4201.
  • Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; et al. (September 2014). "Revised Big Bang Nucleosynthesis with Long-lived, Negatively Charged Massive Particles: Updated Recombination Rates, Primordial 9Be Nucleosynthesis, and Impact of New 6Li Limits". The Astrophysical Journal Supplement Series. 214 (1): Article 5. arXiv:1403.4156.
  • Coc, Alain (2017). "Primordial Nucleosynthesis". Journal of Physics: Conference Series. 665 (1): Article 012001. arXiv:1609.06048. Conference: "Nuclear Physics in Astrophysics VI (NPA6) 19–24 May 2013, Lisbon, Portugal".
  • Coc, Alain; Uzan, Jean-Philippe; Vangioni, Elisabeth (October 2014). "Standard big bang nucleosynthesis and primordial CNO Abundances after Planck". Journal of Cosmology and Astroparticle Physics. 2014 (10): Article 050. arXiv:1403.6694.
  • Sunyaev, R. A.; Chluba, J. (August 2009). "Signals From the Epoch of Cosmological Recombination". Astronomical Notes. 330 (7): 657–674.
  • Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal. 819 (2). 129. arXiv:1603.00461.
  • Dijkstra, Mark (22 October 2014). "Lyα Emitting Galaxies as a Probe of Reionization". Publications of the Astronomical Society of Australia. 31: e040. arXiv:1406.7292.
  • Madau, Piero; Haardt, Francesco; Rees, Martin J. (1 April 1999). "Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Source". The Astrophysical Journal. 514 (2): 648–659. arXiv:astro-ph/9809058.
  • Barkana, Rennan; Loeb, Abraham (July 2001). "In the Beginning: The First Sources of Light and the Reionization of the Universe". Physics Reports. 349 (2): 125–238. arXiv:astro-ph/0010468.
  • Gnedin, Nickolay Y.; Ostriker, Jeremiah P. (10 September 1997). "Reionization of the Universe and the Early Production of Metals". The Astrophysical Journal. 486 (2): 581–598. arXiv:astro-ph/9612127.
  • Lu, Limin; Sargent, Wallace L. W.; Barlow, Thomas A.; et al. (13 February 1998). "The Metal Contents of Very Low Column Density Lyman-alpha Clouds: Implications for the Origin of Heavy Elements in the Intergalactic Medium". arXiv:astro-ph/9802189.
  • Bouwens, Rychard J.; Illingworth, Garth D.; Oesch, Pascal A.; et al. (10 June 2012). "Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the UV Luminosity Functions at z ≥ 5–8 from the HUDF09 WFC3/IR Observations". The Astrophysical Journal Letters. 752 (1): Article L5. arXiv:1105.2038.
  • Xiaohu, Fan; Narayanan, Vijay K.; Lupton, Robert H.; et al. (December 2001). "A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ~ 6". The Astrophysical Journal. 122 (6): 2833–2849. arXiv:astro-ph/0108063.
  • Perry, Jill (10 July 2007). "Astronomers Claim to Find the Most Distant Known Galaxies" (Press release). Pasadena, CA: California Institute of Technology. Caltech Media Relations. Stark, Daniel P.; Ellis, Richard S.; Richard, Johan; et al. (1 July 2007). "A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization". The Astrophysical Journal. 663 (1): 10–28. arXiv:astro-ph/0701279.
  • Peebles, P. J. E.; Ratra, Bharat (22 April 2003). "The cosmological constant and dark energy". Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347.

astronomy.com

bbc.com

bicepkeck.org

books.google.com

briankoberlein.com

caltech.edu

astro.caltech.edu

caltech.edu

  • Perry, Jill (10 July 2007). "Astronomers Claim to Find the Most Distant Known Galaxies" (Press release). Pasadena, CA: California Institute of Technology. Caltech Media Relations. Stark, Daniel P.; Ellis, Richard S.; Richard, Johan; et al. (1 July 2007). "A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization". The Astrophysical Journal. 663 (1): 10–28. arXiv:astro-ph/0701279.

cnn.com

columbia.edu

math.columbia.edu

  • Woit, Peter (13 May 2014). "BICEP2 News". Not Even Wrong (Blog). New York: Department of Mathematics, Columbia University.

doi.org

esa.int

sci.esa.int

forbes.com

harvard.edu

ui.adsabs.harvard.edu

  • Zel'dovitch, Yakov B.; Novikov, Igor D. (January–February 1967). "The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological Model". Soviet Astronomy. 10 (4): 602–603. Bibcode:1967SvA....10..602Z.
  • Shapiro, Paul R.; Giroux, Mark L. (15 October 1987). "Cosmological H II Regions and the Photoionization of the Intergalactic Medium". The Astrophysical Journal. 321: L107–L112. Bibcode:1987ApJ...321L.107S.
  • Stone, Michael (15 December 1976). "Lifetime and decay of 'excited vacuum' states of a field theory associated with nonabsolute minima of its effective potential". Physical Review D. 14 (12): 3568–3573. Bibcode:1976PhRvD..14.3568S.
  • 88] Frampton, Paul H. (22 November 1976). "Vacuum Instability and Higgs Scalar Mass". Physical Review Letters. 37 (21): 1378–1380. Bibcode:1976PhRvL..37.1378F.
  • Frampton, Paul H. (15 May 1977). "Consequences of Vacuum Instability in Quantum Field Theory". Physical Review D. 15 (10): 2922–2928. Bibcode:1977PhRvD..15.2922F.

cfa.harvard.edu

ias.edu

sns.ias.edu

lbl.gov

pdg.lbl.gov

  • Tanabashi, M. 2018, p. 358, chpt. 21.4.1: "Big-Bang Cosmology" (Revised September 2017) by Keith A. Olive and John A. Peacock.

mcdonaldobservatory.org

mediacollege.com

mit.edu

ctp.lns.mit.edu

mpg.de

wwwmpa.mpa-garching.mpg.de

nasa.gov

jpl.nasa.gov

jwst.nasa.gov

nationalgeographic.com

nepjol.info

nytimes.com

physicsoftheuniverse.com

sciencealert.com

space.com

spacetelescope.org

ucl.ac.uk

ucla.edu

astro.ucla.edu

  • Notes: Edward L. Wright's Javascript Cosmology Calculator (last modified 23 July 2018). With a default = 69.6 (based on WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H0/Riess) parameters, the calculated age of the universe with a redshift of z = 1100 is in agreement with Olive and Peacock (about 370,000 years).
  • Wright, Edward L. (26 September 2012). "Big Bang Nucleosynthesis". Ned Wright's Cosmology Tutorial. Los Angeles: Division of Astronomy & Astrophysics, University of California, Los Angeles.

web.archive.org

wikipedia.org

ko.wikipedia.org

  • Ryden 2006, eq. 6.41
  • Hinshaw et. al. 2009. See PDF: page 45, Table 7, Age at decoupling, last column. Based on WMAP+BAO+SN parameters, the age of decoupling occurred 376971/(+3162 or −3167) years after the Big Bang.
  • Ryden 2006, pp. 194–195. "Without going into the details of the non-equilibrium physics, let's content ourselves by saying, in round numbers, zdec ≈ 1100, corresponding to a temperature Tdec ≈ 3000 K, when the age of the universe was tdec ≈ 350,000 yr in the Benchmark Model. (...) The relevant times of various events around the time of recombination are shown in Table 9.1. (...) Note that all these times are approximate, and are dependent on the cosmological model you choose. (I have chosen the Benchmark Model in calculating these numbers.)"
  • Ryden 2006, eq. 6.33
  • Gibbons, Hawking & Siklos 1983, pp. 171–204, "Phase transitions in the very early Universe" by Alan H. Guth.
  • Ryden 2003, p. 196
  • Petter 2013, p. 68.
  • Morison 2015, p. 298
  • Ryden 2006
  • Zeilik & Gregory 1998, p. 497
  • Wright 2004, p. 291
  • Mukhanov 2005, p. 120.
  • Adams, Laughlin & Graves 2004

yale.edu

news.yale.edu