(en) W. R. Keatinge et al. (2000): Heat related mortality in warm and cold regions of Europe: observational study. In: British Medical Journal 321 (7262), S. 670–673. online
(en) Peter D. Noerdlinger; Kay R. Brower (2007): The melting of floating ice raises the ocean level. In: The Geophysical Journal International, 170, S. 145–150, doi:10.1111/j.1365-246X.2007.03472.x(PDF; 343 kB)
C. D. Harvell, D. Montecino-Latorre u. a.: Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). In: Science Advances. 5, 2019, S. eaau7042, doi:10.1126/sciadv.aau7042.
(en) Mark C. Urban, Accelerating extinction risk from climate change. In: Science 348, Issue 6234, (2015), 571-573, doi:10.1126/science.aaa4984.
(en) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. DOI:10.1126/science.aac4722 (2015-07).
(en) Robert J. Nicholls und Richard S. J. Tol: Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. In: Phil. Trans. R. Soc. A, Volume 364, Number 1841, April 2006, S. 1073–1095. doi:10.1098/rsta.2006.1754
(en) Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. DOI:10.1088/1748-9326/aacc76 (2018).
(en) Climate change impacts on marine ecosystems through the lens of the size spectrum. DOI:10.1042/ETLS20190042 (2019).
(en) Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. DOI:10.1073/pnas.1900194116 (2019-06).
(en) Impacts of historical warming on marine fisheries production. DOI:10.1126/science.aau1758 (2019-03).
(en) Terry P. Hughes, Michele L. Barnes, David R. Bellwood (2017). Coral reefs in the Anthropocene. Nature546: 82–90. DOI: 10.1038/nature22901.
(en) Wear, S. (2016). Missing the boat: Critical threats to coral reefs are neglected at global scale. Marine Policy72: 153-157. DOI: 10.1016/j.marpol.2016.09.009.
(en) Alvarez-Filip L, Dulvy N, Gill J, Côté I & Watkinson A. (2009). Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences276: 3019-3025. DOI: 10.1098/rspb.2009.0339.
(en) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. DOI:10.1038/s41586-018-0006-5 (2018-04).
(en) Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. DOI:10.1038/s41586-018-0007-4 (2018-04).
(en) Continued Increases in the Intensity of Strong Tropical Cyclones. DOI:10.1175/BAMS-D-19-0338.1 (2020-08).
(en) Kerry Emanuel (2005): Increasing destructiveness of tropical cyclones over the past 30 years. In: Nature, 31 juli, doi:10.1038/nature03906
(en) Peter D. Noerdlinger; Kay R. Brower (2007): The melting of floating ice raises the ocean level. In: The Geophysical Journal International, 170, S. 145–150, doi:10.1111/j.1365-246X.2007.03472.x(PDF; 343 kB)
(en) V. Helm, A. Humbert, H. Miller (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere8: 1539–1559. DOI: 10.5194/tc-8-1539-2014.
(en) Oerlemans, Johannes Hans (2005): Extracting a Climate Signal from 169 Glacier Records, in: Science Express, 3. März, doi:10.1126/science.1107046
(en) Rühland, K., N. R. Phadtare, R. K. Pant, S. J. Sangode, and J. P. Smol (2006): Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India, In: Geophys. Res. Lett., 33, L15709, doi:10.1029/2006GL026704.
(en) Christian Schneebergera, Heinz Blattera, Ayako Abe-Ouchib and Martin Wild (2003): Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2×CO2 scenario. In: Journal of Hydrology 282 (1-4), 10. November 2003, S. 145–163. doi:10.1016/S0022-1694(03)00260-9
(en) T. P. Barnett, J. C. Adam und D. P. Lettenmaier (2005): Potential impacts of a warming climate on water availability in snow-dominated regions. In: Nature 438, S. 303–309. doi:10.1038/nature04141
(en) Paul J. Durack, Susan E. Wijffels and Richard J. Matear. Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000. Science 2012. doi:10.1126/science.1212222.
(en) P. C. D. Milly, R. T. Wetherald, K. A. Dunne, T. L. Delworth (2002): Increasing risk of great floods in a changing climate, in: Nature, 31. Januar, S. 514–517, V. 415, doi:10.1038/415514a
(en) [HTML Significant anthropogenic-induced changes of climate classes since 1950]. DOI:10.1038/srep13487 (28 augustus 2015). Gearchiveerd op 22 mei 2023.
(en) Naia Morueta-Holme, Kristine Engemann, Pablo Sandoval-Acuña, Jeremy D. Jonas, R. Max Segnitz, Jens-Christian Svenning (Oktober 2015). Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. PNAS112 (41): 12741–12745. DOI: 10.1073/pnas.1509938112.
(en) Williams, John W., Stephen T. Jackson und John E. Kutzbach (2007): Projected distributions of novel and disappearing climates by 2100 AD, in: Proceedings of the National Academy of Sciences, 104(13), 27. März, doi:10.1073/pnas.0606292104
(en) Lenoir, J., J. C. Gégout, P. A. Marquet, P. de Ruffray und H. Brisse (2008): A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century, in: Science, Vol. 320, Nr. 5884, S. 1768–1771, 27. Juni, doi:10.1126/science.1156831
(en) Westerling, Anthony Leroy, Hugo G. Hidalgo, Daniel R. Cayan und Thomas W. Swetnam (2006): Warming and Earlier Spring Increases Western U.S. Forest Wildfire Activity, in: Science, Online-Veröffentlichung vom 6. Juli, doi:10.1126/science.1128834
(en) Observed Impacts of Anthropogenic Climate Change on Wildfire in California. DOI:10.1029/2019EF001210 (2019).
(en) Changes in the Frequency and Intensity of Extreme Temperature Events and Human Health Concerns. DOI:10.1007/s40641-015-0017-3 (2015).
(en) Temporal trends in human vulnerability to excessive heat. DOI:10.1088/1748-9326/aab214 (19 maart 2018).
(en) An adaptability limit to climate change due to heat stress. DOI:10.1073/pnas.0913352107 (25 mei 2010).
(en) Future temperature in southwest Asia projected to exceed a threshold for human adaptability. DOI:10.1038/nclimate2833 (6 oktober 2016).
(en) North China Plain threatened by deadly heatwaves due to climate change and irrigation. DOI:10.1038/s41467-018-05252-y (2018-07).
(en) Deadly heat waves projected in the densely populated agricultural regions of South Asia. DOI:10.1126/sciadv.1603322 (2 augustus 2017).
(en) Spatiotemporal Patterns and Synoptics of Extreme Wet‐Bulb Temperature in the Contiguous United States. DOI:10.1002/2017JD027140 (2017-12).
(en) Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. DOI:10.1136/jech-2014-20404000 (2014).
(en) Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. DOI:10.5194/acp-13-1377-2013 (4 februari 2013).
(en) Future global mortality from changes in air pollution attributable to climate change. DOI:10.1038/nclimate3354 (2017).
(en) Martens P., Kovats R.S., Nijhof S., de Vries P., Livermore M.T.J., Bradley D.J., Cox J., McMichael A.J. (1999): Climate change and future populations at risk of malaria – a review of recent outbreaks. In: Global Environmental Change. Vol. 9, S. 89–107, doi:10.1016/S0959-3780(99)00020-5
(en) Long, Stephen P., Elizabeth A. Ainsworth, Andrew D. B. Leakey, Josef Nösberger en Donald R. Ort (2006): Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations, in: Science, Vol. 312, No. 5782, S. 1918–1921, doi:10.1126/science.1114722, zie ook de melding hier.
(en) Schimmel, David (2006): Climate Change and Crop Yields: Beyond Cassandra, in: Science, Vol. 312, No. 5782, S. 1889–1890, doi:10.1126/science.1129913
(en) Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. DOI:10.1371/journal.pmed.1002600 (2018-07).
(en) On climate, conflict and cumulation: suggestions for integrative cumulation of knowledge in the research on climate change and violent conflict. DOI:10.1080/14781158.2014.924917 (2 september 2014).
(en) Climate Change and Psychology: Effects of Rapid Global Warming on Violence and Aggression. DOI:10.1007/s40641-019-00121-2 (31 januari 2019).
(en) Local conditions of drought-related violence in sub-Saharan Africa: The role of road and water infrastructures. DOI:10.1177/0022343316651922 (2016-09).
(en) E. Marie Muehe, Tianmei Wang, Carolin F. Kerl, Britta Planer-Friedrich, Scott Fendorf: Rice production threatened by coupled stresses of climate and soil arsenic. In: Nature Communications. 10, 2019, DOI:10.1038/s41467-019-12946-4.
duncker-humblot.com
elibrary.duncker-humblot.com
(de) Kemfert, Claudia en Barbara Praetorius (2005): Die ökonomischen Kosten des Klimawandels und der Klimapolitik, in: DIW, Vierteljahreshefte zur Wirtschaftsforschung 74, 2/2005, Seite 133–136 (online).
(en) Long, Stephen P., Elizabeth A. Ainsworth, Andrew D. B. Leakey, Josef Nösberger en Donald R. Ort (2006): Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations, in: Science, Vol. 312, No. 5782, S. 1918–1921, doi:10.1126/science.1114722, zie ook de melding hier.
(en) Intergovernmental Panel on Climate Change (2007b): Human health. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change(PDF; 816 kB)
(en) Meredith, Edmund (Helmholtz-Zentrum für Ozeanforschung) et al. in Nature Geoscience: Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extremeOur results reveal a physical mechanism linking a sudden amplification of coastal convective precipitation extremes to gradual SST increase. The increased lower tropospheric humidity provides a richer moisture source for convective precipitation and contributes to low-level instability. More importantly, the near-surface warming reduces static stability, allowing deep convection to be more easily triggered., gepubliceerd op 13 juli 2015
(en) [HTML Significant anthropogenic-induced changes of climate classes since 1950]. DOI:10.1038/srep13487 (28 augustus 2015). Gearchiveerd op 22 mei 2023.
(en) Thomas, C.D. et al. (2004): Extinction risk from climate change, in Nature, Vol. 427, S. 145–148, siehe online
(de) Otto Wöhrbach: Die Klimaanlage des Menschen stößt an ihr Limit. Schwitzen kühlt – doch nicht immer und überall. Im Klimawandel droht immer mehr Regionen der Erde der Hitzetod. (Onlinefassung unter anderem Titel) In: Der Tagesspiegel, 27. August 2019, S. 19. Gearchiveerd op 7 juli 2022.
(en) Burke L, Reytar K, Spalding M, Perry A., Reefs at Risk Revisited. World Resources Institute (2011). Gearchiveerd op 3 oktober 2021. Geraadpleegd op 01-10-2021.
(en) Dyurgerov, Mark B. und Mark F. Meier (2005): Glaciers and the Changing Earth System: A 2004 Snapshot. Institute of Arctic and Alpine Research, Occasional Paper 58 (PDF; 2,6 MB)
(en) [HTML Significant anthropogenic-induced changes of climate classes since 1950]. DOI:10.1038/srep13487 (28 augustus 2015). Gearchiveerd op 22 mei 2023.
(de) Otto Wöhrbach: Die Klimaanlage des Menschen stößt an ihr Limit. Schwitzen kühlt – doch nicht immer und überall. Im Klimawandel droht immer mehr Regionen der Erde der Hitzetod. (Onlinefassung unter anderem Titel) In: Der Tagesspiegel, 27. August 2019, S. 19. Gearchiveerd op 7 juli 2022.
(de) WWF & IfW (2007): Kosten des Klimawandels – Die Wirkung steigender Temperaturen auf Gesundheit und Leistungsfähigkeit(PDF; 5,1 MB)
Richard S.J. Tol: The Stern Review of the economics of climate change: a comment. In: Energy & Environment, Volume 17, Number 6, November 2006, S. 977–981. Gearchiveerd op 10 augustus 2007. (PDF; 37 kB)
(en) Burke L, Reytar K, Spalding M, Perry A., Reefs at Risk Revisited. World Resources Institute (2011). Gearchiveerd op 3 oktober 2021. Geraadpleegd op 01-10-2021.