AndrewA.GelmanAndrewA., JohnJ.CarlinJohnJ., Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors, „Perspectives on Psychological Science”, 9 (6), 2014, s. 641–651, DOI: 10.1177/1745691614551642, ISSN1745-6916 [dostęp 2019-03-31](ang.).
Eric-JanE.J.WagenmakersEric-JanE.J. i inni, A power fallacy, „Behavior Research Methods”, 47 (4), 2015, s. 913–917, DOI: 10.3758/s13428-014-0517-4, ISSN1554-3528 [dostęp 2019-03-31](ang.).
DaniëlD.LakensDaniëlD., Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses, „Social Psychological and Personality Science”, 8 (4), 2017, s. 355–362, DOI: 10.1177/1948550617697177, ISSN1948-5506, PMID: 28736600, PMCID: PMC5502906 [dostęp 2019-03-31](ang.).
John MJ.M.HoenigJohn MJ.M., Dennis MD.M.HeiseyDennis MD.M., The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis, „The American Statistician”, 55 (1), 2001, s. 19–24, DOI: 10.1198/000313001300339897, ISSN0003-1305 [dostęp 2019-03-31](ang.).
DaniëlD.LakensDaniëlD., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, „Frontiers in Psychology”, 4, 2013, DOI: 10.3389/fpsyg.2013.00863, ISSN1664-1078, PMID: 24324449, PMCID: PMC3840331 [dostęp 2017-01-31].
David M.D.M.Erceg-HurnDavid M.D.M., Vikki M.V.M.MirosevichVikki M.V.M., Modern robust statistical methods: an easy way to maximize the accuracy and power of your research, „The American Psychologist”, 63 (7), 2008, s. 591–601, DOI: 10.1037/0003-066X.63.7.591, ISSN0003-066X, PMID: 18855490 [dostęp 2017-02-01].
Jeffrey N.J.N.RouderJeffrey N.J.N., Julia M.J.M.HaafJulia M.J.M., Power, Dominance, and Constraint: A Note on the Appeal of Different Design Traditions, „Advances in Methods and Practices in Psychological Science”, 1 (1), 2018, s. 19–26, DOI: 10.1177/2515245917745058, ISSN2515-2459 [dostęp 2019-03-31](ang.).
FranzF.FaulFranzF. i inni, Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses, „Behavior Research Methods”, 41 (4), 2009, s. 1149–1160, DOI: 10.3758/BRM.41.4.1149, ISSN1554-3528 [dostęp 2019-03-31](ang.).
Frank A.F.A.BoscoFrank A.F.A. i inni, Correlational effect size benchmarks, „The Journal of Applied Psychology”, 2, 2015, s. 431–449, DOI: 10.1037/a0038047, ISSN1939-1854, PMID: 25314367 [dostęp 2017-01-06].
D.D.LakensD.D., E.R.K.E.R.K.EversE.R.K.E.R.K., Sailing From the Seas of Chaos Into the Corridor of Stability: Practical Recommendations to Increase the Informational Value of Studies, „Perspectives on Psychological Science”, 3, 2014, s. 278–292, DOI: 10.1177/1745691614528520 [dostęp 2017-01-06](ang.).
Open ScienceO.S.CollaborationOpen ScienceO.S., An Open, Large-Scale, Collaborative Effort to Estimate the Reproducibility of Psychological Science, „Perspectives on Psychological Science”, 6, 2012, s. 657–660, DOI: 10.1177/1745691612462588 [dostęp 2017-01-06](ang.).
DanielD.LakensDanielD., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, „Cognition”, 4, 2013, s. 863, DOI: 10.3389/fpsyg.2013.00863, PMID: 24324449, PMCID: PMC3840331 [dostęp 2017-01-06].1 stycznia
DaniëlD.LakensDaniëlD., Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses, „Social Psychological and Personality Science”, 8 (4), 2017, s. 355–362, DOI: 10.1177/1948550617697177, ISSN1948-5506, PMID: 28736600, PMCID: PMC5502906 [dostęp 2019-03-31](ang.).
DaniëlD.LakensDaniëlD., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, „Frontiers in Psychology”, 4, 2013, DOI: 10.3389/fpsyg.2013.00863, ISSN1664-1078, PMID: 24324449, PMCID: PMC3840331 [dostęp 2017-01-31].
David M.D.M.Erceg-HurnDavid M.D.M., Vikki M.V.M.MirosevichVikki M.V.M., Modern robust statistical methods: an easy way to maximize the accuracy and power of your research, „The American Psychologist”, 63 (7), 2008, s. 591–601, DOI: 10.1037/0003-066X.63.7.591, ISSN0003-066X, PMID: 18855490 [dostęp 2017-02-01].
J.S.J.S.RossiJ.S.J.S., Statistical power of psychological research: what have we gained in 20 years?, „Journal of Consulting and Clinical Psychology”, 5, 1990, s. 646–656, ISSN0022-006X, PMID: 2254513 [dostęp 2017-01-06].
Frank A.F.A.BoscoFrank A.F.A. i inni, Correlational effect size benchmarks, „The Journal of Applied Psychology”, 2, 2015, s. 431–449, DOI: 10.1037/a0038047, ISSN1939-1854, PMID: 25314367 [dostęp 2017-01-06].
John P.A.J.P.A.IoannidisJohn P.A.J.P.A., Why most discovered true associations are inflated, „Epidemiology (Cambridge, Mass.)”, 5, 2008, s. 640–648, DOI: 10.1097/EDE.0b013e31818131e7, ISSN1531-5487, PMID: 18633328 [dostęp 2017-01-06].
DanielD.LakensDanielD., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, „Cognition”, 4, 2013, s. 863, DOI: 10.3389/fpsyg.2013.00863, PMID: 24324449, PMCID: PMC3840331 [dostęp 2017-01-06].1 stycznia
Cohen, Jacob, 1923-1998., Statistical power analysis for the behavioral sciences, L. Erlbaum Associates, 1988, ISBN 0-8058-0283-5, OCLC17877467.1 stycznia Brak numerów stron w książce
AndrewA.GelmanAndrewA., JohnJ.CarlinJohnJ., Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors, „Perspectives on Psychological Science”, 9 (6), 2014, s. 641–651, DOI: 10.1177/1745691614551642, ISSN1745-6916 [dostęp 2019-03-31](ang.).
Eric-JanE.J.WagenmakersEric-JanE.J. i inni, A power fallacy, „Behavior Research Methods”, 47 (4), 2015, s. 913–917, DOI: 10.3758/s13428-014-0517-4, ISSN1554-3528 [dostęp 2019-03-31](ang.).
DaniëlD.LakensDaniëlD., Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses, „Social Psychological and Personality Science”, 8 (4), 2017, s. 355–362, DOI: 10.1177/1948550617697177, ISSN1948-5506, PMID: 28736600, PMCID: PMC5502906 [dostęp 2019-03-31](ang.).
John MJ.M.HoenigJohn MJ.M., Dennis MD.M.HeiseyDennis MD.M., The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis, „The American Statistician”, 55 (1), 2001, s. 19–24, DOI: 10.1198/000313001300339897, ISSN0003-1305 [dostęp 2019-03-31](ang.).
DaniëlD.LakensDaniëlD., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, „Frontiers in Psychology”, 4, 2013, DOI: 10.3389/fpsyg.2013.00863, ISSN1664-1078, PMID: 24324449, PMCID: PMC3840331 [dostęp 2017-01-31].
David M.D.M.Erceg-HurnDavid M.D.M., Vikki M.V.M.MirosevichVikki M.V.M., Modern robust statistical methods: an easy way to maximize the accuracy and power of your research, „The American Psychologist”, 63 (7), 2008, s. 591–601, DOI: 10.1037/0003-066X.63.7.591, ISSN0003-066X, PMID: 18855490 [dostęp 2017-02-01].
Jeffrey N.J.N.RouderJeffrey N.J.N., Julia M.J.M.HaafJulia M.J.M., Power, Dominance, and Constraint: A Note on the Appeal of Different Design Traditions, „Advances in Methods and Practices in Psychological Science”, 1 (1), 2018, s. 19–26, DOI: 10.1177/2515245917745058, ISSN2515-2459 [dostęp 2019-03-31](ang.).
FranzF.FaulFranzF. i inni, Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses, „Behavior Research Methods”, 41 (4), 2009, s. 1149–1160, DOI: 10.3758/BRM.41.4.1149, ISSN1554-3528 [dostęp 2019-03-31](ang.).
J.S.J.S.RossiJ.S.J.S., Statistical power of psychological research: what have we gained in 20 years?, „Journal of Consulting and Clinical Psychology”, 5, 1990, s. 646–656, ISSN0022-006X, PMID: 2254513 [dostęp 2017-01-06].
Frank A.F.A.BoscoFrank A.F.A. i inni, Correlational effect size benchmarks, „The Journal of Applied Psychology”, 2, 2015, s. 431–449, DOI: 10.1037/a0038047, ISSN1939-1854, PMID: 25314367 [dostęp 2017-01-06].